
PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

Grant Agreement No. ICT-2009-270082

Project Acronym PATHS

Project full title
Personalised Access To cultural Heritage Spaces

D 3.2 First Prototype and Documentation

Author: Stein Runar Bergheim (AVINET);

Contributors: Mark Hall (USFD)

 Eneko Agirre (UPV/EHU)

 Aitor Soroa (UPV/EHU)

 Antonis Kukurikos (iSieve)

 Kate Fernie (MDR Partners)

 Tor Gunnar Øverli (AVINET)

Project funded under FP7-ICT-2009-6 Challenge 4 – “Digital Libraries and Content”

Status Final

Distribution level Public

Date of delivery 23.05.2012

Type Software, documentation

Project website http://www.paths-project.eu

Project Coordinator Dr. Mark Stevenson
University of Sheffield

http://www.paths-project.eu/
http://www.paths-project.eu/

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

2

Change Log

Version Date Amended by Changes

0.1 01/04/2012 Stein Runar Bergheim TOC

0.2 30/04/2012 Stein Runar Bergheim First draft including data specification

0.3 12/05/2012 Stein Runar Bergheim Added prototype web service API
specification

0.4 15/05/2012 Stein Runar Bergheim Added data layer documentation

0.5 19/05/2012 Stein Runar Bergheim Added screenshots for section on
prototype user interface and executive
summary.

0.6 22.05.2012 Mark Stevenson, Kate Fernie,
Mark Hall, Stein Runar
Bergheim

Adjustments from pre-submission review
by project partners. Major updates to
PATHS database and PATHS Web API
sections.

1.0 23.05.2012 Stein Runar Bergheim Minor updates, checking.

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

3

Executive Summary ... 4

1 Introduction ... 5

1.1 PATHS Prototype Overview ... 5

1.2 Relationship to other deliverables .. 6

2 Paths Database .. 7

2.1 Data stores .. 7

2.2 Data model .. 7

2.3 Data ... 8

3 Paths Web API ... 9

3.1 List of Web Services .. 9

3.2 PATHS Web API Usage Examples ...10

3.3 Service status codes ...12

3.4 Authentication ...12

4 Paths Prototype User Interface ..13

4.1 Overview of the user interface ..13

4.2 Search functions ...14

4.3 Paths functions ...16

4.4 Explore functions ..19

4.5 Other functions ...20

5 Appendices ..22

Appendix A – Acronym List and Glossary ..22

Appendix B – Paths Data layer ..24

Appendix C – Paths Web API ..38

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

4

Executive Summary

PATHS aims to develop a system which makes it both enjoyable and easy for users to explore
cultural heritage collections held in digital libraries.

The project is taking a user centred approach to design and development. During the first year
of the project user requirements were collected and analysed to inform the functional
specification of the first prototype system, and the system architecture was defined. Based on
this work, the first prototype of the PATHS system has been developed.

This deliverable presents the prototype system and its accompanying documentation. This
prototype is designed to demonstrate the core functionality of the system and the potential of
the navigation, information retrieval and content enrichment methodology proposed by the
project. The prototype will be evaluated by users and, together with the laboratory trials, will
inform the development of a second prototype system.

The deliverable consists of three parts:

1. A web application, the PATHS Prototype User Interface (UI)
2. A web service API, the PATHS Web API
3. A logical data model, the PATHS Database

Figure 1: The principal components of D 3.2

The web application is based on the user requirements defined in D1.3 “Functional Specification
of First Prototype” and D4.1 “Initial Prototype Interface Design”. The application itself is
developed on the Python platform and performs its data I/O through web service requests to the
underlying web service API.

The web service API and the logical data model correspond to the requirements defined in D3.1
“Specification of System Architecture”. The API is implemented using .NET XML web services
and provides Client ports to HttpGet, HttpPost, SOAP 1.1 and SOAP 1.2.

The content available through the prototype is the result of D2.1 “Processing and
Representation of Content for First Prototype”. This content has been parsed into DDL
statements and loaded into the PATHS logical data model which is implemented using the
leading open source database, PostgreSQL.

This report provides an overview of the different parts of the system; seeks to provide with a
platform for conducting system, technical and end-user testing; and to provide technical
reference documentation for third parties who are interested in implementing services on the
comprehensive PATHS Web API.

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

5

1 Introduction
The first PATHS prototype, D3.2, is a comprehensive web application infrastructure consisting
of a data layer, an application layer and a client/presentation layer. The deliverable is not a
stand-alone report, rather it is a combination of a web application, application code and
documentation sets suitable for parties who would like to audit – or develop applications based
on the PATHS API.

1.1 PATHS Prototype Overview
The PATHS Prototype is implemented on a web server platform. The platform runs on the
Windows 2008 Server operating system and is configured for HTTP access over TCP/IP version
4 and 6.

The core web server in the platform is Internet Information Server (IIS), integrated with Apache
Tomcat Servlet Container (Tomcat) version 7 in order to enable architecture components such
as the search server SOLR. A specific server context has been established under IIS where
requests will be forwarded to Tomcat.

All data in the system are stored and managed in the relational database management system
(RDBMS) PostgreSQL version 9.3. XML based Europeana and Alinari item records (produced
by the work described in D2.1) are parsed into SQL statements and loaded into PostgreSQL. All
other entities such as users, paths, nodes, comments, tags and ratings are created from within
the user interface itself and are “born” directly into the database.

The SOLR search server indexes items, paths and nodes. Items are static and do not need to
be re-indexed, however, paths and nodes are dynamic data. Whenever a path or node is
added, modified or deleted, a posting is made to the SOLR index to ensure that the search
services provided by the SolrProxy Web Service returns synchronized real-time data.

Also present in the data layer of the PATHS infrastructure is a Virtuoso Triple Store. As yet, this
server is not invoked by any of the web services, but is present in the infrastructure to provide
resolution of sophisticated SPARQL network queries for the second PATHS prototype.

The PATHS API itself is developed as XML Web Services in ASP.NET and publishes four
different bindings for Client requests:

SOAP 1.1
SOAP 1.2
HTTP GET
HTTP POST

While Web Service requests may be made using any of these four protocols, the Web Service
response will always be a string of JavaScript Object Notation (JSON) data. JSON is flexible
and lightweight alternative to XML for encoding and transfer of data and is supported by all
mainstream web service libraries.

If the service is called via a SOAP request, the string will be encoded in a single XML string
element, if the service is called via a HTTP GET or POST request, the response will be plain
text.

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

6

Figure 2: The diagram shows the key service and server components of the PATHS API

1.2 Relationship to other deliverables
This deliverable corresponds to four previous PATHS deliverables:

 D1.1 “User requirements analysis”

 D1.3 “Functional Specification of First Prototype”

 D3.1 “Specification of System Architecture”

 D4.1 “Initial Prototype Interface Design”

The prototype provides access to data resulting from a further PATHS deliverable:

 D2.1 “Processing and Representation of Content for First Prototype”

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

7

2 Paths Database
This section is an introduction to Appendix B – Paths Data layer which provides the technical
documentation for the logical and physical data model of the entities and relationships in the
PATHS data model.

The fundamental element of the PATHS architecture on which the prototype is based is a data
layer consisting of robust and well-proven mechanisms for storing, managing and retrieving
information.

There are three distinctive types of information present in the data layer:

1. Static information delivered to PATHS from content providers Europeana and Alinari.
2. Static linking information generated through semantic processing and sentiment

analysis.
3. Dynamic information generated through the PATHS Prototype user interface such as

users, paths, nodes, comments, ratings and tags.

The terms “static” and “dynamic” refers to when the respective information resources are
created. Static information is loaded into the system “one-time” and may be erased and over-
written during subsequent updates. Dynamic information is created from within the PATHS user
interface.

2.1 Data stores
The PATHS database consists of three different data stores: (1) a PostgreSQL relational
database management system server instance; (2) a SOLR search server instance and; (3) a
Virtuoso triple store server instance.

For the first prototype, only the PostgreSQL and SOLR data stores are used. Virtuoso is
included in the platform to cater for extended second prototype functionality as defined in D3.1.

2.2 Data model
The PATHS data model is described in detail in Appendix B – Paths Data layer and is an SQL
based, relational data model.

Presently, graph data models expressed as RDF in triple store databases are on the rise in
popularity. However, they are still outperformed by 10-20 times by traditional relational data
models for regular queries and far more for queries returning structured record based
information.

All data originating from Europeana and Alinari is strictly record based and the information
objects defined in PATHS, paths, nodes, comments etc., all have a static structure. Out of
concern for performance (D.3.1), a hybrid approach has been chosen where the infrastructure
consists of both a relational database and a graph database. The latter will be used for resolving
queries over graph based datasets such as thesauri and topic hierarchies. In the design of the
relational model, one concept has been lent from the graph databases, namely the use of URIs
as unique identifiers for information elements. In a relational model, traditionally all information
is developed as tables. If you have two different tables, “paths” and “nodes”, and you would like
to enable users to add comments to these tables, the database should include two additional
tables “paths_comments” and “nodes_comments” each with a foreign key referencing the table
to which the comments belong.

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

8

In a system like PATHS where comments, tags and ratings should be added to three different
sets of objects, this would lead to an unnecessary duplication of tables and web service
methods. For this reason, every record which is created for a principal PATHS information type
will have its own unique URI generated. A path in the PATH table with id = “1” will get the URI
“http://paths-project.eu/path/1”, a user in the USR table with id= “32” will get the URI
“http://paths-project.eu/usr/1”.

PATHS implements tags, comments and ratings based on URIs rather than numeric foreign
keys, this provides a significantly better overview in the data model – and also allows the
comment, rating and tagging mechanisms to be employed on a mix of PATHS information types
and external resources identifiable by a URI.

2.3 Data
The data loaded into the database are parsed from the XML-files resulting from D2.1. This
includes: metadata records from Alinari and Europeana; background links from items to web
resources, similarity links between items and; links between items and thesauri/concept
hierarchies.

The work of processing and enriching Europeana and Alinari data is comprehensive, technically
sophisticated and resource intensive in terms of CPU and processing time. All data are
therefore pre-processed and not enriched “on-the-fly”. The processes are described in detail in
D2.1.

http://paths-project.eu/path/1
http://paths-project.eu/usr/1

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

9

3 Paths Web API
This section provides an introduction to Appendix C – Paths Web API which is a programmers’
reference aimed at developers implementing services based on the PATHS Web API.

Why should the PATHS system include a Web Service API? The PATHS prototype could have
been implemented as a single application, hard-linked to the underlying data sources using
direct database request, removing the added overhead of Web Service requests.

Such an approach would however result in a closed, “black-box” system which could not be
audited and, more importantly, not be re-used by additional PATHS applications such as the
second prototype and the mobile applications proposed by the PATHS project – or for that
matter third party applications developed externally.

As a consequence, PATHS has chosen to implement a comprehensive Web Service API
publishing all relevant data I/O methods as Web Services which can be consumed by any HTTP
client capable of issuing HttpGet or HttpPost requests including all popular JavaScript
frameworks and HTTP libraries from all major development languages such as .NET, Java,
PHP, Python, Ruby etc.

The PATHS Web API is available for testing at the following address.

URI : http://development.paths-project.eu

In order to test the web services, this section includes information on each web service and how
it can be invoked and tested using either your web browser to point to the URL of the service
end-point – or from application code. This information is relevant both for auditing the framework
and for developing applications based on it.

3.1 List of Web Services
For logical clarity, all methods are not made available under one single Web Service end-point.
Methods are divided into the following classes which each provide access to a set of functions
dealing with logically distinctive parts of the PATHS system:

Functions related to users and authentication: Usr.asmx
Functions related to creation of paths and nodes: Path.asmx
Functions related to the workspace: Workspace.asmx
Functions related to user interaction and UGC: Social.asmx
Functions related to search and retrieval of items: Item.asmx
Functions related to topic hierarches: Topic.asmx

In addition to the native PATHS Web Services above, SOLR is used as a mechanism for
information retrieval. While the PostgreSQL contains functions for full-text searching, the
inverted index of SOLR outperforms that of RDBMS for complex queries and multilingual
support.

The static data in the PATHS database, namely item records from Europeana and Alinari is
indexed once, at the time of loading the data. The dynamic data are “posted” as documents to
the SOLR web service end-point whenever a path or node is inserted, updated or deleted.

The search server SOLR provides its own set of web services but is not by default secure. The
PATHS API provides a wrapper on top of the SOLR select end-point and extends it with the
same type of error reporting as for the native PATHS Web Services. Whenever a service

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

10

request fails, one of the status codes listed under section 3.3 below will be returned. This allows
for seamless use along with the rest of the PATHS stack.

Functions related to information retrieval: SolrProxy.aspx

The technical documentation for the SOLR search server and the underlying Apache Lucene
technology is not repeated here. For information on how to invoke this service, please refer to
the SOLR web site: http://lucene.apache.org/solr/features.html.

3.2 PATHS Web API Usage Examples
This section shows examples of how the PATHS Web API may be invoked to audit its
functionality and return data. This section is of a technical instructive nature.

3.2.1 EXAMPLE: HTTP Header of Post Request

By default, these web services will return the response JSON wrapped in an XML element
named "string". The encoding will be UTF-8. To get pure JSON, the Content-Type parameter is
passed as part of the HTTP/POST request:

Content-Type: application/json; charset=utf-8

Users invoking the methods of the PATHS Web API are likely to use a cross-browser
AJAX/HTTP library like jQuery. Such libraries enable developers to specify the format of the
return data type as shown above and in example Error! Reference source not found..

3.2.2 EXAMPLE: jQuery.ajax request

.ajax({
 type: "POST",
 url: "/Usr.asmx/CreateUser",
 data: "{
 'cognitiveStyle':'1',
 'usr':'user',
 'foaf_nick':'Nick Name',
 'pwd':'password’,
 'email':’user@domain.tld',
 'openid':'true'}",
 contentType: "application/json; charset=utf-8",
 dataType: ‘json’,
 success: done,
 error: cstatus
);

The JSON result of any web service request will be wrapped in an additional top-level object
"d". Take this into account when parsing the response. This is a security feature of the .NET
Framework.

On the next level of the object, the value "code" states whether the request was successful and
the object data is an array of values.

http://lucene.apache.org/solr/features.html

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

11

3.2.3 EXAMPLE: Response JSON from Web Service Request

{

"d":{
 "code":"2",

 "data":
[{"id":"1","fk_usr_id":"1","fk_rel_uri":"http://www.bergheim.dk","comment":"Thi
s is a third comment","isdeleted":"0","tstamp":"04/04/2012 23:56:21"}]

}
}

 To return the value of "fk_rel_uri" in JavaScript, you would type

var uri = d.data[0].fk_rel_uri;

When a JSON result yields more than one return item, i.e. a result set from a query, items are
accessible through a zero-based Array.

3.2.4 EXAMPLE: Response JSON from Web Service Request yielding
more than one item

{
 "d":{
 "code": "2",
 "data":[
{"id":"3","fk_usr_id":"1","fk_rel_uri":"http://www.bergheim.dk","comment":"A
comment","isdeleted":"0","tstamp":"04/04/2012 23:56:21"},

{"id":"2","fk_usr_id":"1","fk_rel_uri":"http://www.bergheim.dk","comment":"Anot
her comment","isdeleted":"0","tstamp":"04/04/2012 23:56:21"},

{"id":"1","fk_usr_id":"1","fk_rel_uri":"http://www.bergheim.dk","comment":"A
third comment","isdeleted":"0","tstamp":"04/04/2012 23:56:21"}
]
 }
}

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

12

An example of how to iterate through the array of comments contained in the JSON object is
found below:

for (var i = 0; i < jsonData.d.data.length; i++) {
 var title = d.data[i].comment;
}

3.3 Service status codes

The following return codes are used for PATHS web services and can be used to validate the
results.

NoSuchUser = -1
AuthenticationFailed = 1
OperationCompletedSuccessfully = 2
OperationFailed = 3
AuthenticationSucceeded = 4
OperationRequiresAuthentication = 5
LogoutSuccess = 6
DatabaseSQLError = 7
QueryDidNotReturnRecords = 8
FailedToCreateTemporaryUser = 9
SpecifiedObjectDoesNotExist = 10
NotImplementedYet = 99

Most of the service codes are self-explanatory. The latter one, 99, is only used during
development of new functionality. All functions documented in the API, see 0Appendix C –
Paths Web API, are fully implemented and operational.

3.4 Authentication
Most of the services require the user to be authenticated. Authentication is maintained between
requests through a session cookie which is sent along with the HTTP-request from the Client
application.

A call to the web service "Authenticate" with the credentials as parameters will set session
variables letting other web services know that the user is authenticated - as well as store the
usr_id for use in user profile related functions.

URI: http://development.paths-project.eu/Usr.asmx/Authenticate

Unless a cookie container is sent along with the web request, there is no mechanism to
exchange session variables between requests to the Web Services; therefore, developers
implementing applications on top of the API must take care to fit their HTTP requests with a
cookie container.

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

13

4 Paths Prototype User Interface
The first PATHS prototype user interface is a Python client application which implements the
functionality defined in D1.3 “Functional Specification of First Prototype” using the designs
developed in D4.1 “Initial Prototype Interface Design”.

The application resolves all its data I/O operations through the PATHS API, a set of web
services described in greater detail in the chapter “Paths Web API” above.

The application is available for testing from the following addresses:

URL : http://prototype.paths-project.eu/

4.1 Overview of the user interface
The prototype user interface consists of three main sections: paths; explore and search. The
first section, paths, allows users to search for paths and view PATH objects. The second section
allows for browsing and exploration of the information in the PATHS data model. The third
section permits searching and information retrieval.

Figure 3: Main user interface framework for first PATHS prototype application

Each of the three sections has a dedicated pane in the main user interface. These remain
available throughout all subsequent screens, allowing for simple and recognizable navigation
options. The interface allows for plenty of whitespace and uses text-links for high-level
navigation in support of the WAI and WCAG guidelines.

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

14

In addition to the three main viewer functions, the right hand side of the screen has two vertical
tabs, “My paths” and “Workspace”. These tabs give access to functions targeted at PATHS
authors.

Below, examples screens from the prototype user interface are shown for each of the three
main functions. The natural order of these three sections from the perspective of a viewer would
be as displayed in the user interface. For the purpose of this introduction however, the order is
shuffled to reflect the perspective of a user who would like to author PATHS:

1. Starting off by searching (1) and exploring for items which should form part of the PATH
and adding these to the workspace

2. Editing titles and descriptions for workspace items

3. Creating paths (2) including title and description

4. Adding workspace items as nodes to the path

5. Publishing the path

6. Exploring (3) available PATHS through the user interface

4.2 Search functions
The first functions a user looking to build a path must use are search or exploration. In the
below examples, search is assumed. From the start-up page, a simple “quick search” function is
available. By clicking the tab “search” the main search screen appears.

Figure 4: User interface for the comprehensive search function

The search screen includes a list of keywords which the user can select from, a single free-text
search field as well as a scrolling field of sample content thumbnails representative of the
contents of each of the keywords. The keywords are derived from the data processed in D2.1.

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

15

Figure 5: User interface for presentation of search results

The search functions provide for an efficient way of retrieving information from the Alinari and
Europeana collections. Results are presented with a title, a short by-line and a thumbnail (if
present in the data).

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

16

Figure 6: User interface for presentation of a single item from the Europeana and Alinari collections

When clicking an item from the result list (or when navigating via e.g. the tag cloud) that item is
shown on the screen. Interaction with social networking sites is enabled through link buttons. It
is also possible to rate the content by pressing the “+1” (like) and “-1” (dislike) buttons

Figure 7: User interface for adding items to workspace

While most data creation operations require users to be authenticated, users can start to collect
items which they would like to add to their PATHS even before they are logged in.

Items can be added to a temporary workspace in the current user session. This is done through
clicking the “+ Add to workspace” button which is shown on all item presentation screens.

4.3 Paths functions
Having added a number of items to the workspace, the user can now create a PATH – for this
purpose the user must be authenticated. For a screenshot and brief description of the
authentication interface, please see section 4.5 below.

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

17

Figure 8: User interface to create a PATH

The path creation screen includes a form on the left where information about the path such as
title, description, tags and duration can be entered. On the right/center part of the screen, the
nodes of the path are listed. Buttons to save drafts or publish the path for public viewing are
available above the nodes.

The title of each node is by default that of the item it is based on but may be edited using the
user interface. Using the “edit” pencil button which is shown to the far right of the title of each
node, other node metadata can be edited.

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

18

‘

Figure 9: User interface for viewing a single PATH

When a path has been created it is available as a separate information element through the
user interface and can be viewed just like an item. The path viewing screen includes basic
metadata on the path including: suggested paths; possibility to interact with social networks; add
ratings; comments or tags and; choose whether or not to follow the path.

Figure 10: User interface for viewing a node in a path

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

19

If choosing to follow the path, the screen showing the node appears. The node screen includes
information on the path on the left hand side of the screen including a list of crossing paths
(paths which include one or more identical items). The right/center side of the screen is
occupied by information about the node itself including all user specified metadata such as title,
description etc.

The screen allows for user interaction including social network bookmarks, rating and
comments.

A set of buttons connected by “breadcrumbs” are shown directly above the node information,
providing functions to move to the next or previous node.

4.4 Explore functions
Users who are not looking for something particular but are merely after “edutainment” in the
form of browsing the Europeana and Alinari collections through the PATHS UI, the exploration
interface is the place to start. This allows for flexible navigation of paths, nodes and items
through two main functions.

Figure 11: User interface for exploration of selected elements from Europeana and Alinari collections

The first function, the screen which appears when clicking the “Explore” tab shows a cycling
slideshow of items and item-titles from the underlying collections, providing the user with
random suggestions of content to explore.

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

20

Figure 12: User interface for navigating the collections of Alinari and Europeana using a visual tag-cloud

The second function, the tag-cloud, provides an view of all the items with a thumbnail image and
a title. This allows end-users to browse the collections visually. By clicking on either of the
thumbnails, the corresponding item will be displayed.

4.5 Other functions
The selection of user interface screens above is not exhaustive and many other utility functions
are available throughout the user interface. The one associated with authentication is shown
below.

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

21

Figure 13: User interface for end-user authentication

The authentication screen provides access to login, register or receive a password reminder by
e-mail if the user has forgotten the password chosen at the time of registration.

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

22

5 Appendices

Appendix A – Acronym List and Glossary

Term Description

API Application Programming Interface

HTML Hyper-Text Mark-up Language

HTTP Hyper-Text Transfer Protocol

IP Internet Protocol

JavaScript See: ECMA Script

JDBC Java DataBase Connectivity

JSON JavaScript Object Notation

KML Keyhole Mark-up Language

ODBC Open DataBase Connectivity

OGC Open Geospatial Consortium

OMG Object Modelling Group

RDBMS Relational Database Management System

REST REpresentational State Transfer

SDLC System Development Life Cycle

SMB Server Message Block. A protocol for file sharing on
Windows and Unix based systems

SOA Service-Oriented Architecture

SPARQL Simple Protocol And RDF Query Language

SQL Structured Query Language

TCP Transmission Control Protocol

UML Unified Modelling Language

WFS Web Feature Server. A protocol for on-the-fly generation of
map images using http requests.

WMS Web Map Server. A protocol for query and download of
vector maps using http requests.

WP Work Package

WS Web Service

WSDL Web Service Description Language

XML eXtensible Mark-up Language

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

23

SFS Simple Features Specification

CVS Concurrent Versioning System

WAI Web Accessibility Initiative

WCAG Web Content Accessibility Guidelines

JSON JavaScript Object Notation

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

24

Appendix B – Paths Data layer

Logical data model report

Author (Stein) Runar Bergheim, Asplan Viak Internet A/S (Ed.)

Copyright ICT-2009-270082 - PATHS - Personalised Access To cultural Heritage Spaces

Target DBMS PostgreSQL 9.3

Created 2012-03-11

Modified 2012-05-15

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

25

Entity Relationship diagram

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

List of entities

Entity name Primary key attributes # Attributes Description

behaviour_link id 5 Information on which
Items a user has
traversed between.

cog_style id 2 Codelist of different
cognitive styles. A user
may have one cognitive
style.

comment id 6 Comments added to
objects identifiable by a
URI

Item id 37 Information on resources
imported from Alinari and
Europeana,
corresponding to the
Europeana Semantic
Elements specification.

item_link id 11 Links between Items and
external background
resources (e.g.
Wikipedia) as derived
from semantic
processing.

item_similarity id 10 Information on similarity
between Items as derived
from semantic
processing.

item_topic id 3 Many to many table
between item and topic.
One topic may have
many items, one item
may have many topics.

Node id 11 Information about path
nodes such as title,
description, node_order
etc.

node_link id 5 Links two nodes together
and allows information
and attributes to be
attached to the
relationship between two
nodes.

node_link_type id 2 Type of relationship
between two nodes.

Path id 13 Information about paths
such as title, subject,
description etc.

rating id 5 Assigns a rating to any
resource identifiable by a
URI. Rating is linked to a
rating scale and a user. A
user is only allowed to
rate a URI resource
once.

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

27

rating_scale id 2 Rating scale for paths
and other resources
identifiable by a URI. 1 =
dislikes, 2 = likes.

Tag id 4 Tags: keywords and
keyphrases assigned to
URI resources. Tags may
be language specific and
are identifiable by a URI.

tagging id 5 Association between
tags, users and
resources identifiable by
a URI. A user can only
add the same keyword to
a resource once.

Topic id 8 Information about topic
hierarchies

ubehaviour id 8 Information on the way
users navigate through
information in the PATHS
database.

ugroup id 2 Codelist of user groups
used to distinguish what
privieges each user has
in the PATHS system.
New users by default are
members of the 'user'
group (id=1).
Administrator users are
members of the 'admin'
group (id=2). New groups
may be added to further
differentiate privileges.

Usr id 11 Information about users
such as username,
password, nickname etc.

usr_ugroup id 3 Many-to-many
relationship table
between users and user
groups.

workspace id 6 Temporary storage table
for half-baked nodes and
items that a user wants to
add to PATHS at a later
stage after working on
them.

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

28

Entity details

Entity: behaviour_link

Entity details:

Description Information on which Items a user has traversed between.

Primary key
constraint name

PK_behaviour_link

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes Unique identifier

FK fk_rel_suri CHARACTER
VARYING

Yes Source URI
resource (the URI of
the resource the
user came from)

FK fk_rel_turi CHARACTER
VARYING

Yes Target URI resource
(the URI of the
resource the user
browsed to)

 avg_ttime INTEGER No Average time at
target URI in
seconds

 trav_count INTEGER No Number of times the
link has been
traversed.

Entity: cog_style

Entity details:

Description Codelist of different cognitive styles. A user may have one cognitive style.

Primary key
constraint name

PK_cog_style

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes Unique identifier

 title CHARACTER
VARYING

Yes Name of cognitive
style

Entity: comment

Entity details:

Description Comments added to objects identifiable by a URI

Primary key
constraint name

PK_comment

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes Unique identifier

FK fk_usr_id INTEGER Yes Id of user creating
comment

 fk_rel_uri CHARACTER
VARYING

Yes URI of resource
which comment is
assigned to

 comment TEXT Yes Comment text

 isdeleted BOOLEAN Yes Flag indicating

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

29

whether the entry is
deleted
(true=deleted)

 tstamp TIMESTAMP WITH
TIME ZONE

Yes Timestamp for the
time of creation of
the record

Entity: item

Entity details:

Description Information on resources imported from Alinari and Europeana, corresponding
to the Europeana Semantic Elements specification.

Primary key
constraint name

PK_item

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes

 uri CHARACTER
VARYING

Yes Automatically
generated uri at
the time of
creating a new
record

 dc_title TEXT No

 dc_creator TEXT No

 dc_subject TEXT No

 dc_description TEXT No

 dc_publisher TEXT No

 dc_contributor TEXT No

 dc_date TEXT No

 dc_type TEXT No

 dc_format TEXT No

 dc_identifier CHARACTER
VARYING

No

 dc_source TEXT No

 dc_language TEXT No

 dc_relation TEXT No

 dc_rights TEXT No

 dc_coverage TEXT No

 dcterms_provenance TEXT No

 dcterms_ispartof TEXT No

 dcterms_temporal TEXT No

 dcterms_spatial TEXT No

 europeana_unstored TEXT No

 europeana_object TEXT No

 europeana_provider TEXT No

 europeana_type TEXT No

 europeana_rights TEXT No

 europeana_dataprovider TEXT No

 europeana_isshownby TEXT No

 europeana_isshownat TEXT No

 europeana_country TEXT No

 europeana_language TEXT No

 europeana_uri TEXT No

 europeana_usertag TEXT No

 europeana_year CHARACTER
VARYING

No

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

30

 europeana_previewNoDistribute TEXT No

 europeana_hasobject TEXT No

 idxfti TSVECTOR No An index field
including keyword
information from
main metadata
fields to be used
by PostgreSQLs
internal full-text
search functions

Entity: item_link

Entity details:

Description Links between Items and external background resources (e.g. Wikipedia) as
derived from semantic processing.

Primary key
constraint name

PK_item_link

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes

FK fk_rel_uri CHARACTER
VARYING

Yes

 source CHARACTER
VARYING

Yes

 field CHARACTER
VARYING

No

 start_offset INTEGER No

 end_offset INTEGER No

 confidence NUMERIC No

 method CHARACTER
VARYING

No

 link CHARACTER
VARYING

Yes

 sentiment NUMERIC No

 paths_classification CHARACTER
VARYING

No

Entity: item_similarity

Entity details:

Description Information on similarity between Items as derived from semantic processing.

Primary key
constraint name

PK_item_similarity

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes

FK fk_sitem_id INTEGER Yes

FK fk_titem_id INTEGER Yes

 field CHARACTER
VARYING

No

 field_no INTEGER No

 start_offset INTEGER No

 end_offset INTEGER No

 confidence NUMERIC No

 method CHARACTER No

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

31

VARYING

 sentiment NUMERIC No

Entity: item_topic

Entity details:

Description Many to many table between item and topic. One topic may have many items,
one item may have many topics.

Primary key
constraint name

PK_item_topic

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes

FK fk_item_id INTEGER Yes

FK fk_topic_id INTEGER Yes

Entity: node

Entity details:

Description Information about path nodes such as title, description, node_order etc.

Primary key
constraint name

PK_node

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes

FK fk_path_id INTEGER Yes

 fk_rel_uri CHARACTER
VARYING

Yes

 uri CHARACTER
VARYING

Yes Automatically
generated uri at the
time of creating a
new record

 dc_title CHARACTER
VARYING

Yes

 dc_description TEXT No

 type CHARACTER
VARYING

No

 node_order DOUBLE
PRECISION

Yes

 isdeleted BOOLEAN Yes

 tstamp TIMESTAMP WITH
TIME ZONE

Yes

 idxfti TSVECTOR No An index field
including keyword
information from
main metadata fields
to be used by
PostgreSQLs
internal full-text
search functions

Entity: node_link

Entity details:

Description Links two nodes together and allows information and attributes to be attached
to the relationship between two nodes.

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

32

Primary key
constraint name

PK_node_link

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes

FK fk_snode_id INTEGER Yes

FK fk_tnode_id INTEGER Yes

FK fk_node_link_type_id INTEGER Yes

 trav_count INTEGER No

Entity: node_link_type

Entity details:

Description Type of relationship between two nodes.

Primary key
constraint name

PK_node_link_type

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes

 title CHARACTER
VARYING

Yes

Entity: path

Entity details:

Description Information about paths such as title, subject, description etc.

Primary key
constraint name

PK_path

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes Primary key and
unique identifier

FK fk_usr_id INTEGER Yes Id of user who created
path

 uri CHARACTER
VARYING

Yes Automatically
generated uri at the
time of creating a new
record

 dc_title CHARACTER
VARYING

Yes Title of path, taken
from Dublin Core
namespace

 dc_subject CHARACTER
VARYING

No Subject of path, taken
from Dublin Core
namespace. Multiple
values are separated
by semi-colon ";"

 dc_description TEXT No Description of path,
taken from Dublin
Core namespace.

 dc_rights CHARACTER
VARYING

No Rights to use path,
taken from Dublin
Core namespace.

 access CHARACTER
VARYING

No Any access
restrictions associated
with path

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

33

 lom_audience TEXT No Intended audience,
taken from Learning
Object Model
namespace

 lom_length CHARACTER
VARYING

No Approximate time
required/duration of
path, taken from
Learning Object
Model namespace.

 isdeleted BOOLEAN Yes A boolean value
indicating whether the
resource has been
marked for deletion or
not.

 tstamp TIMESTAMP WITH
TIME ZONE

Yes An automatically
created timestamp at
the time of creating a
new record

 idxfti TSVECTOR No An index field
including keyword
information from main
metadata fields to be
used by PostgreSQLs
internal full-text
search functions

Entity: rating

Entity details:

Description Assigns a rating to any resource identifiable by a URI. Rating is linked to a
rating scale and a user. A user is only allowed to rate a URI resource once.

Primary key
constraint name

PK_rating

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes

FK fk_usr_id INTEGER Yes

FK fk_rating_scale_id INTEGER Yes

 fk_rel_uri CHARACTER
VARYING

Yes

 isdeleted BOOLEAN Yes

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

34

Entity: rating_scale

Entity details:

Description Rating scale for paths and other resources identifiable by a URI. 1 = dislikes, 2
= likes.

Primary key
constraint name

PK_rating_scale

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes

 label CHARACTER
VARYING

Yes

Entity: tag

Entity details:

Description Tags: keywords and keyphrases assigned to URI resources. Tags may be
language specific and are identifiable by a URI.

Primary key
constraint name

PK_tag

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes

 uri CHARACTER
VARYING

Yes Automatically
generated uri at the
time of creating a
new record

 label CHARACTER
VARYING

No

 lang CHARACTER
VARYING

No

Entity: tagging

Entity details:

Description Association between tags, users and resources identifiable by a URI. A user
can only add the same keyword to a resource once.

Primary key
constraint name

PK_tagging

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes

FK fk_tag_id INTEGER Yes

FK fk_usr_id INTEGER Yes

 fk_rel_uri CHARACTER Yes

 isdeleted BOOLEAN Yes

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

35

Entity: topic

Entity details:

Description Information about topic hierarchies

Primary key
constraint name

PK_topic

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes

FK fk_parent_topic_id INTEGER No

 uri CHARACTER
VARYING

No Automatically
generated uri at the
time of creating a
new record

 dc_description TEXT No

 dc_subject CHARACTER
VARYING

No

 dc_title CHARACTER
VARYING

Yes

 topic_hierarchy CHARACTER
VARYING

Yes

 topic_thumbnails CHARACTER
VARYING

No

Entity: ubehaviour

Entity details:

Description Information on the way users navigate through information in the PATHS
database.

Primary key
constraint name

PK_ubehaviour

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes

FK fk_usr_id INTEGER Yes

 usession CHARACTER Yes

 target_uri CHARACTER Yes URI of object user is
navigating to

 target_title CHARACTER Yes

 source_title CHARACTER No

 source_uri CHARACTER No URI of object user is
navigating from

 stime INTEGER No Time spent at
source in seconds

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

36

Entity: ugroup

Entity details:

Description Codelist of user groups used to distinguish what privieges each user has in the
PATHS system. New users by default are members of the 'user' group (id=1).
Administrator users are members of the 'admin' group (id=2). New groups may
be added to further differentiate privileges.

Primary key
constraint name

PK_user_group

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes

 title CHARACTER
VARYING

Yes

Entity: usr

Entity details:

Description Information about users such as username, password, nickname etc.

Primary key
constraint name

PK_usr

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes

FK fk_cog_style_id INTEGER Yes

 uri CHARACTER
VARYING

Yes Automatically
generated uri at the
time of creating a
new record

 usr CHARACTER
VARYING

Yes

 foaf_nick CHARACTER No

 pwd CHARACTER
VARYING

No

 email CHARACTER
VARYING

Yes

 openid BOOLEAN No

 isdeleted BOOLEAN Yes

 tstamp TIMESTAMP WITH
TIME ZONE

Yes

 istemporary BOOLEAN Yes

Entity: usr_ugroup

Entity details:

Description Many-to-many relationship table between users and user groups.

Primary key
constraint name

PK_usr_ugroup

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes

FK fk_usr_id INTEGER Yes

FK fk_ugroup_id INTEGER Yes

Entity: workspace

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

37

Entity details:

Description Temporary storage table for half-baked nodes and items that a user wants to
add to PATHS at a later stage after working on them.

Primary key
constraint name

PK_workspace

Attributes:

Key Attribute name Data type Not null Description

PK id SERIAL Yes

FK fk_usr_id INTEGER Yes

 fk_rel_uri CHARACTER
VARYING

No

 dc_title CHARACTER
VARYING

Yes

 dc_description TEXT No

 Type CHARACTER
VARYING

No

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

38

Appendix C – Paths Web API

Web Service: Usr

Summary: The Usr web service contains methods for authenticating users, creating and
modifying users, logging user behavior and issuing reminder e-mails upon forgetting
passwords. The service is fundamental to web services which require authentication.

Web Method: Authenticate

Summary: Perform authentication of user

Authenticate Request Parameters

Parameter
Data type Description

Usr s:string User name

Pwd s:string Password

Authenticate Response

Data type
Description

s:string (JSON) AuthenticationSucceeded (code=4) on success, AuthenticationFailed
(code=1) on wrong username/password, OperationFailed (code=3)
on error.

Example of Authenticate HttpGet Request

Request:

http://development.paths-project.eu/Usr.asmx/Authenticate?usr=s:string&pwd=s:string

Response:
{
 "code": 4,
 "msg": "Authentication succeeded, user authenticated",
 "extmsg": "1"
}

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

39

Web Method: Logout

Summary: Logs the current user out of the system by erasing user information from the
session

Logout Request Parameters

N/A (this web method does not accept any calling parameters)

Logout Response

Data type Description

s:string (JSON) Always returns LogoutSuccess (code=6)

Example of Logout HttpGet Request

Request:
http://development.paths-project.eu/Usr.asmx/Logout?

Response:
{
 "code": 6,
 "msg": "User logged out",
 "extmsg": "User logged out"
}

Web Method: CreateUser

Summary: Create a new user

CreateUser Request Parameters

Parameter Data type Description

fk_cog_style_id s:int Integer, the primary key id of the cognitive
style associated with the user

Usr s:string Username

foaf_nick s:string Nickname/display name

Pwd s:string Password

Email s:string E-mail address

Opened s:Boolean Whether or not the user account is an OpenID
account (Boolean, true/false)

CreateUser Response

Data type Description

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

40

s:string (JSON) Returns OperationCompletedSuccessfully (code=2) and the user
data for the created user

Example of CreateUser HttpGet Request

Request:
http://development.paths-
project.eu/Usr.asmx/CreateUser?fk_cog_style_id=s:int&usr=s:string&foaf_nick=s:string&pwd
=s:string&email=s:string&openid=s:boolean

Response:
{
 "code": 2,
 "data": {
 "id": "80",
 "fk_cog_style_id": "1",
 "uri": "http://paths-project.eu/usr/80",
 "usr": "Paths-Test-User",
 "foaf_nick": "Anonymous",
 "pwd": "test",
 "email": "user@paths-project.eu",
 "openid": "0",
 "isdeleted": "0",
 "tstamp": "08.05.2012 10:11:51 PM",
 "istemporary": "0"
 }
}

Web Method: ModifyUser

Summary: Modifies information about a user identified by its URI

ModifyUser Request Parameters

Parameter Data type Description

usr_uri s:string URI of the user to be modified

fk_cog_style_id s:string The id of the users cognitive style (optional)

Usr s:string Username (optional)

foaf_nick s:string Nickname/display name (optional)

Pwd s:string Password (optional)

Email s:string E-mail (optional)

Opened s:string Whether the user is an OpenID user
(Boolean, optional)

ModifyUser Response

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

41

Data type Description

s:string (JSON) User data object for modified user

Example of ModifyUser HttpGet Request

Request:
http://development.paths-
project.eu/Usr.asmx/ModifyUser?usr_uri=s:string&fk_cog_style_id=s:string&usr=s:string&foaf
_nick=s:string&pwd=s:string&email=s:string&openid=s:string

Response:
{
 "code": 2,
 "data": [{
 "uri": "http://paths-project.eu/usr/80",
 "fk_cog_style_id": "1",
 "usr": "Renamed-User",
 "foaf_nick": "Anonymous II",
 "email": "changed@email.com",
 "openid": "0",
 "istemporary": "0",
 "tstamp": "08.05.2012 10:11:51 PM"
 }]
}

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

42

Web Method: DeleteUser

Summary: Deletes a user from PATHS

Remark: Method requires authentication

DeleteUser Request Parameters

Parameter Data type Description

usr_uri s:string URI of the user to be deleted

DeleteUser Response

Data type Description

s:string (JSON) OperationCompletedSuccessfully (code=2) if the user was either
marked as deleted or did not exist, DatabaseSQLError (code=7) on
error.

Example of DeleteUser HttpGet Request

Request:
http://development.paths-project.eu/Usr.asmx/DeleteUser?usr_uri=s:string

Response:
{
 "code": 2,
 "msg": "Operation completed successfully",
 "extmsg": "User successfully marked for deletion"
}

Web Method: ForgotPassword

Summary: Sends an e-mail with the password of the user corresponding

ForgotPassword Request Parameters

Parameter Data type Description

pUsr s:string The username of the user to whom the
password reminder should be sent

ForgotPassword Response

Data type Description

s:string (JSON) Always returns OperationCompletedSuccessfully (code=2). If the
username is found, an e-mail with the corresponding password is

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

43

sent to the users e-mail address.

Example of ForgotPassword HttpGet Request

Request:

http://development.paths-project.eu/Usr.asmx/ForgotPassword?pUsr=s:string

Web Method: GetCurrentUser

Summary: Gets information about the currently authenticated or temporary user.

GetCurrentUser Request Parameters

N/A (this web method does not accept any calling parameters)

GetCurrentUser Response

Data type Description

s:string (JSON) User data object for current user

Example of GetCurrentUser HttpGet Request

Request:
http://development.paths-project.eu/Usr.asmx/GetCurrentUser?

Web Method: GetUserByUri

Summary: Returns information about the user identified by the specified URI

GetUserByUri Request Parameters

Parameter Data type Description

usr_uri s:string URI of user

GetUserByUri Response

Data type Description

s:string (JSON) User data object

Example of GetUserByUri HttpGet Request

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

44

Request:

http://development.paths-project.eu/Usr.asmx/GetUserByUri?usr_uri=s:string

Response:
{
 "code": 2,
 "data": {
 "uri": "http://paths-project.eu/usr/80",
 "fk_cog_style_id": "1",
 "usr": "Renamed-User",
 "foaf_nick": "Anonymous II",
 "email": "runarbe@gmail.com",
 "istemporary": "0",
 "tstamp": "08.05.2012 10:11:51 PM",
 "paths_ugroup": []
 }
}

Web Method: LogPageView

Summary: Logs a URI to the browsing history of the user and returns the five last pages
visited during the session.

LogPageView Request Parameters

Parameter Data type Description

myTargetTitle s:string Title of web page to log

myTargetUri s:string URI of web page to log

LogPageView Response

Data type Description

s:string (JSON) List of five most recent logged page view objects for current session

Example of LogPageView HttpGet Request

Request:
http://development.paths-
project.eu/Usr.asmx/LogPageView?myTargetTitle=s:string&myTargetUri=s:string

Response:
{
 "code": 2,
 "data": [{
 "id": "1",

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

45

 "usession": "2qxv0t55eqlut455rt1xls55",
 "target_uri": "http://paths-project.eu/",
 "target_title": "Page Title",
 "source_uri": "http://paths-project.eu/",
 "source_title": "Page Title",
 "stime": ""
 }, {
 "id": "54",
 "usession": "2qxv0t55eqlut455rt1xls55",
 "target_uri": "http://paths-project.eu/",
 "target_title": "Page Title",
 "source_uri": "",
 "source_title": "",
 "stime": ""
 }, {
 "id": "53",
 "usession": "o0ai45yi01rkni45pk5kdjeb",
 "target_uri": "http://paths-project.eu/",
 "target_title": "Page Title",
 "source_uri": "http://paths-project.eu/",
 "source_title": "Page Title",
 "stime": ""
 }, {
 "id": "52",
 "usession": "o0ai45yi01rkni45pk5kdjeb",
 "target_uri": "http://paths-project.eu/",
 "target_title": "Page Title",
 "source_uri": "http://paths-project.eu/",
 "source_title": "Page Title",
 "stime": ""
 }, {
 "id": "51",
 "usession": "o0ai45yi01rkni45pk5kdjeb",
 "target_uri": "http://paths-project.eu/",
 "target_title": "Page Title",
 "source_uri": "http://paths-project.eu/",
 "source_title": "Page Title",
 "stime": ""
 }, {
 "id": "50",
 "usession": "o0ai45yi01rkni45pk5kdjeb",
 "target_uri": "http://paths-project.eu/",
 "target_title": "Page Title",
 "source_uri": "http://paths-project.eu/",
 "source_title": "Page Title",
 "stime": ""
 }]
}

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

46

Web Service: Item

Summary: The Item web service contains methods for querying and retrieving information
about items. PATHS items are information derived from Europeana and Alinari and includes
most attributes defined by the Europeana Semantic Elements. Items have been enriched
with (1) background links, (2) topic links and (3) item similarity links.

Web Method: Search

Summary: Experimental function to enable full-text search without using SOLR

Search Request Parameters

Parameter Data type Description

myQuery s:string Query expression

myLang s:string One of english, spanish or leave empty

myLength s:string How many result records to retrieve

myOffset s:string Where to start retrieving in a result set
(paging)

Search Response

Data type Description

s:string (JSON) JSON String: List of items

Example of Search HttpGet Request

Request:
http://development.paths-
project.eu/Item.asmx/Search?myQuery=s:string&myLang=s:string&myLength=s:string&myOf
fset=s:string

Response:
{
 "code": 2,
 "data": {
 "id": "1",
 "uri": "http://www.beamishcollections.com/collections/display.asp?ItemID=1",
 "dc_title": "Enamel Advertisement",
 "dc_creator": "",
 "dc_subject": ["Advertising Enamels"],
 "dc_description": "Enamel Advertisement \"Spillers Balanced Rations and UVECO\"/
\"For Cattle, Sheep, Pigs& Poultry\"/ \"We Sell Them\" Height: 1280mm x 795mm.",
 "dc_publisher": "",
 "dc_contributor": "",
 "dc_date": "",
 "dc_type": "Image",

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

47

 "dc_format": "",
 "dc_identifier": "http://www.beamishcollections.com/collections/display.asp?ItemID=1",
 "dc_source": "Beamish Treasures",
 "dc_language": "",
 "dc_relation": "",
 "dc_rights": "",
 "dc_coverage": "",
 "dcterms_provenance": "",
 "dcterms_ispartof": "Beamish Treasures",
 "dcterms_temporal": "",
 "dcterms_spatial": "",
 "europeana_unstored": "",
 "europeana_object":
"http://www.peoplesnetwork.gov.uk/dpp/resource/2060233/stream/thumbnail_image_jpeg",
 "europeana_provider": "CultureGrid",
 "europeana_type": "IMAGE",
 "europeana_rights": "",
 "europeana_dataprovider": "",
 "europeana_isshownby": "",
 "europeana_isshownat":
"http://www.beamishcollections.com/collections/display.asp?ItemID=1",
 "europeana_country": "uk",
 "europeana_language": "en",
 "europeana_uri":
"http://www.europeana.eu/resolve/record/09405/8BBFE1B9EC70EEA34651852DD27A3C0F
2532624C",
 "europeana_usertag": "",
 "europeana_year": "",
 "europeana_previewnodistribute": "",
 "europeana_hasobject": "true",
 "paths_topic": [{
 "uri": "http://paths-project.eu/topic/1",
 "dc_description": "Description",
 "dc_subject": ["Subject"],
 "dc_title": "Title",
 "topic_hierarchy": "PATHS",
 "topic_thumbnails": "thumb.gif"
 }, {
 "uri": "http://paths-project.eu/topic/2",
 "dc_description": "Description 2",
 "dc_subject": ["Subject 2"],
 "dc_title": "Title 2",
 "topic_hierarchy": "PATHS",
 "topic_thumbnails": "thumb2.gif"
 }, {
 "uri": "http://paths-project.eu/topic/3",
 "dc_description": "Description 3",
 "dc_subject": ["Subject 3"],
 "dc_title": "Title 3",
 "topic_hierarchy": "PATHS",
 "topic_thumbnails": "thumb3.gif"
 }],
 "paths_rating": [{
 "likes": "0",

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

48

 "dislikes": "0"
 }]
 }
}

Web Method: GetItemsForTopic

Summary: Get all items associated with a specific topic.

GetItemsForTopic Request Parameters

Parameter Data type Description

topic_uri s:string URI of topic

myLimit s:string Number of results to retrieve

myStart s:string Where to start retrieving in a result set
(paging)

GetItemsForTopic Response

Data type Description

s:string (JSON) JSON String: List of items

Example of GetItemsForTopic HttpGet Request

Request:
http://development.paths-
project.eu/Item.asmx/GetItemsForTopic?topic_uri=s:string&myLimit=s:string&myStart=s:strin
g

Response:
{
 "code": 2,
 "data": {
 "count": 1,
 "items": [
 // Items go here

]
 }
}

Web Method: GetItemByUri

Summary: Get a single item by its URI

GetItemByUri Request Parameters

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

49

Parameter Data type Description

item_uri s:string URI of item

GetItemByUri Response

Data type Description

s:string (JSON) JSON String: Single item information

Example of GetItemByUri HttpGet Request

Request:

http://development.paths-project.eu/Item.asmx/GetItemByUri?item_uri=s:string

Response:
{
 "code": 2,
 "data": {
 "id": "1",
 "uri": "http://www.beamishcollections.com/collections/display.asp?ItemID=1",
 "dc_title": "Enamel Advertisement",
 "dc_creator": "",
 "dc_subject": ["Advertising Enamels"],
 "dc_description": "Enamel Advertisement \"Spillers Balanced Rations and UVECO\"/
\"For Cattle, Sheep, Pigs& Poultry\"/ \"We Sell Them\" Height: 1280mm x 795mm.",
 "dc_publisher": "",
 "dc_contributor": "",
 "dc_date": "",
 "dc_type": "Image",
 "dc_format": "",
 "dc_identifier": "http://www.beamishcollections.com/collections/display.asp?ItemID=1",
 "dc_source": "Beamish Treasures",
 "dc_language": "",
 "dc_relation": "",
 "dc_rights": "",
 "dc_coverage": "",
 "dcterms_provenance": "",
 "dcterms_ispartof": "Beamish Treasures",
 "dcterms_temporal": "",
 "dcterms_spatial": "",
 "europeana_unstored": "",
 "europeana_object":
"http://www.peoplesnetwork.gov.uk/dpp/resource/2060233/stream/thumbnail_image_jpeg",
 "europeana_provider": "CultureGrid",
 "europeana_type": "IMAGE",
 "europeana_rights": "",
 "europeana_dataprovider": "",
 "europeana_isshownby": "",
 "europeana_isshownat":
"http://www.beamishcollections.com/collections/display.asp?ItemID=1",

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

50

 "europeana_country": "uk",
 "europeana_language": "en",
 "europeana_uri":
"http://www.europeana.eu/resolve/record/09405/8BBFE1B9EC70EEA34651852DD27A3C0F
2532624C",
 "europeana_usertag": "",
 "europeana_year": "",
 "europeana_previewnodistribute": "",
 "europeana_hasobject": "true",
 "paths_topic": [{
 "uri": "http://paths-project.eu/topic/1",
 "dc_description": "Description",
 "dc_subject": ["Subject"],
 "dc_title": "Title",
 "topic_hierarchy": "PATHS",
 "topic_thumbnails": "thumb.gif"
 }, {
 "uri": "http://paths-project.eu/topic/2",
 "dc_description": "Description 2",
 "dc_subject": ["Subject 2"],
 "dc_title": "Title 2",
 "topic_hierarchy": "PATHS",
 "topic_thumbnails": "thumb2.gif"
 }, {
 "uri": "http://paths-project.eu/topic/3",
 "dc_description": "Description 3",
 "dc_subject": ["Subject 3"],
 "dc_title": "Title 3",
 "topic_hierarchy": "PATHS",
 "topic_thumbnails": "thumb3.gif"
 }],
 "paths_rating": [{
 "likes": "0",
 "dislikes": "0"
 }]
 }
}

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

51

Web Method: GetItemByID

Summary: Get a single item by its ID

GetItemByID Request Parameters

Parameter Data type Description

ItemID s:string ID of item

GetItemByID Response

Data type Description

s:string (JSON) JSON String: Single item information

Example of GetItemByID HttpGet Request

Request:
http://development.paths-project.eu/Item.asmx/GetItemByID?ItemID=s:string

Web Service: Topic

Web Method: GetTopicHierarchy

Summary: Returns the parent hierarchy of a topic by its ID

GetTopicHierarchy Request Parameters

Parameter Data type Description

topic_id s:string Unique database identifier of topic

GetTopicHierarchy Response

Data type Description

s:string (JSON) JSON String: Topic hierarchy

Example of GetTopicHierarchy HttpGet Request

Request:
http://development.paths-project.eu/Topic.asmx/GetTopicHierarchy?topic_id=s:string

Web Method: GetTopicByUri

Summary: Get parent topic hierarchy of topic by its URI

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

52

GetTopicByUri Request Parameters

Parameter Data type Description

topic_uri s:string URI of topic

GetTopicByUri Response

Data type Description

s:string (JSON) JSON String: Topic hierarchy

Example of GetTopicByUri HttpGet Request

Request:

http://development.paths-project.eu/Topic.asmx/GetTopicByUri?topic_uri=s:string

Web Method: GetTopicById

Summary: Get a topic by its ID

GetTopicById Request Parameters

Parameter Data type Description

topic_id s:int Unique database identifier of topic

GetTopicById Response

Data type Description

s:string (JSON) JSON String: Single topic information

Example of GetTopicById HttpGet Request

Request:
http://development.paths-project.eu/Topic.asmx/GetTopicById?topic_id=s:int

Web Service: Workspace

Summary: The Workspace web service contains methods for creating, managing, querying
and deleting workspace items. A workspace item can be considered a node which has not
yet been completed and/or assigned ot a Path. Workspace items can refer to any object
identifiable by a URI and most commonly references records from the Items table.

Web Method: AddWorkspaceItem

Summary: Adds an item to the present users workspace.

AddWorkspaceItem Request Parameters

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

53

Parameter Data type Description

fk_rel_uri s:string Any URI, but commonly a reference to the
URI of a PATHS Item

dc_title s:string Title of workspace item

dc_description s:string Description of workspace item (optional)

type s:string Type of workspace item (optional, used?)

AddWorkspaceItem Response

Data type Description

s:string (JSON) JSON String: Workspace item

Example of AddWorkspaceItem HttpGet Request

Request:
http://development.paths-
project.eu/Workspace.asmx/AddWorkspaceItem?fk_rel_uri=s:string&dc_title=s:string&dc_de
scription=s:string&type=s:string

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

54

Web Method: DeleteWorkspaceItem

Summary: Deletes an item from the workspace.

DeleteWorkspaceItem Request Parameters

Parameter Data type Description

workspace_id s:string Unique datbase identifier of workspace item
to be deleted

DeleteWorkspaceItem Response

Data type Description

s:string (JSON) JSON String: OperationCompletedSuccessfully (code=2) on success,
DatabaseSQLError (code=7) on error.

Example of DeleteWorkspaceItem HttpGet Request

Request:
http://development.paths-
project.eu/Workspace.asmx/DeleteWorkspaceItem?workspace_id=s:string

Web Method: UpdateWorkspaceItem

Summary: Updates the information about an item in the users workspace

UpdateWorkspaceItem Request Parameters

Parameter Data type Description

workspace_id s:int Unique database identifier of the workspace
item to be updated.

fk_rel_uri s:string URI of referenced object

dc_title s:string Title of workspace item

dc_description s:string Description of workspace item (optional)

type s:string Type of workspace item (optional)

UpdateWorkspaceItem Response

Data type Description

s:string (JSON) JSON String: Single workspace item information

Example of UpdateWorkspaceItem HttpGet Request

Request:
http://development.paths-

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

55

project.eu/Workspace.asmx/UpdateWorkspaceItem?workspace_id=s:int&fk_rel_uri=s:string&
dc_title=s:string&dc_description=s:string&type=s:string

Web Method: GetWorkspaceItem

Summary: Get a workspace item by its ID

GetWorkspaceItem Request Parameters

Parameter Data type Description

workspace_id s:string Unique database identifier of workspace item
to be retrieved.

GetWorkspaceItem Response

Data type Description

s:string (JSON) JSON String: Single workspace item information

Example of GetWorkspaceItem HttpGet Request

Request:
http://development.paths-
project.eu/Workspace.asmx/GetWorkspaceItem?workspace_id=s:string

Web Method: GetWorkspaceItems

Summary: Get all workspace items for the current authenticated or temporary user.

GetWorkspaceItems Request Parameters

N/A (this web method does not accept any calling parameters)

GetWorkspaceItems Response

Data type Description

s:string (JSON) JSON String: List of workspace items information

Example of GetWorkspaceItems HttpGet Request

Request:

http://development.paths-project.eu/Workspace.asmx/GetWorkspaceItems?

Web Service: Path

Summary: The Path web service contains methods for creation, editing and deletion of
paths and path nodes. Furthermore, it has functions to transfer work space items to nodes in

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

56

a path and to qury paths and nodes. Paths and nodes are the core dynamic objects in the
PATHS Web Service API. A path consist of one or more nodes, a node references an item
(or another object) via a URI.

Web Method: DeletePathNode

Summary: Delete a node identified by its URI

Remark: Method requires authentication

DeletePathNode Request Parameters

Parameter Data type Description

node_uri s:string URI of node to be deleted

DeletePathNode Response

Data type Description

s:string (JSON) JSON String: Single node information

Example of DeletePathNode HttpGet Request

Request:
http://development.paths-project.eu/Path.asmx/DeletePathNode?node_uri=s:string

Web Method: DeletePath

Summary: Delete a node identified by its URI

Remark: Method requires authentication

DeletePath Request Parameters

Parameter Data type Description

path_uri s:string URI of path to be deleted

DeletePath Response

Data type Description

s:string (JSON) JSON String: Single node information

Example of DeletePath HttpGet Request

Request:
http://development.paths-project.eu/Path.asmx/DeletePath?path_uri=s:string

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

57

Web Method: UpdatePathNode

Summary: Update information of a node identified by its URI

Remark: Method requires authentication

UpdatePathNode Request Parameters

Parameter Data type Description

node_uri s:string URI of node to be updated

fk_path_id s:string Unique database identifier of path node
should be assigned to (Integer, optional)

fk_rel_uri s:string URI of object referenced by node. Often an
item but can be any object identifiable by a
URI (URI, optional)

dc_title s:string Title of node (optional)

dc_description s:string Description of node (optional)

type s:string Type of node (optional, used?)

node_order s:string Number indicating the position of the node
within a path (Double, optional)

UpdatePathNode Response

Data type Description

s:string (JSON) JSON String: OperationCompletedSuccessfully (code=2) on success

Example of UpdatePathNode HttpGet Request

Request:
http://development.paths-
project.eu/Path.asmx/UpdatePathNode?node_uri=s:string&fk_path_id=s:string&fk_rel_uri=s:
string&dc_title=s:string&dc_description=s:string&type=s:string&node_order=s:string

Web Method: AddNodeFromWorkspaceToPath

Summary: Add a workspace item from the users workspace to a path as a node.

Remark: Metod requires a user to be authenticated

AddNodeFromWorkspaceToPath Request Parameters

Parameter Data type Description

path_uri s:string URI of path to which node should be added

workspace_id s:string Unique database identifier of workspace item

node_order s:string Number indicating the position of the node
within the path, defaults to the highest
number + 1 (Double, optional)

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

58

AddNodeFromWorkspaceToPath Response

Data type Description

s:string (JSON) JSON String: Single node information

Example of AddNodeFromWorkspaceToPath HttpGet Request

Request:
http://development.paths-
project.eu/Path.asmx/AddNodeFromWorkspaceToPath?path_uri=s:string&workspace_id=s:s
tring&node_order=s:string

Web Method: UpdatePath

Summary: Update information of a node identified by its URI

Remark: Method requires authentication

UpdatePath Request Parameters

Parameter Data type Description

path_uri s:string URI of path to be modified

dc_title s:string Title of node (optional)

dc_subject s:string Modified subject of path (optional) separater
multiple entries by a semicolon ";"

dc_description s:string Description of node (optional)

dc_rights s:string Modified rights statement of path (optional)

access s:string Modified access information for path
(optional)

lom_audience s:string Modified audience for path (optional)

lom_length s:string Modified length/duration of path (optional)

UpdatePath Response

Data type Description

s:string (JSON) JSON String: OperationCompletedSuccessfully (code=2) on success

Example of UpdatePath HttpGet Request

Request:
http://development.paths-
project.eu/Path.asmx/UpdatePath?path_uri=s:string&dc_title=s:string&dc_subject=s:string&d
c_description=s:string&dc_rights=s:string&access=s:string&lom_audience=s:string&lom_len
gth=s:string

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

59

Web Method: CreatePath

Summary: Create a new path

Remark: Methods requires a user to be authenticated

CreatePath Request Parameters

Parameter Data type Description

dc_title s:string Title of path

dc_subject s:string Subject of path, separate multiple values by a
semicolon ";"

dc_description s:string Description of path

dc_rights s:string Rights statement for path

access s:string Access information for path

lom_audience s:string Audience for path

lom_length s:string Length/duration of path

CreatePath Response

Data type Description

s:string (JSON) Path data object for created path

Example of CreatePath HttpGet Request

Request:
http://development.paths-
project.eu/Path.asmx/CreatePath?dc_title=s:string&dc_subject=s:string&dc_description=s:str
ing&dc_rights=s:string&access=s:string&lom_audience=s:string&lom_length=s:string

Web Method: GetPath

Summary: Get a single path identified by its URI

GetPath Request Parameters

Parameter Data type Description

path_uri s:string URI of path to be retrieved

GetPath Response

Data type Description

s:string (JSON) Path data object

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

60

Example of GetPath HttpGet Request

Request:

http://development.paths-project.eu/Path.asmx/GetPath?path_uri=s:string

Web Method: GetCurrentUserPaths

Summary: Get list of paths created by current authenticated user

Remark: Method requires a user to be authenticated

GetCurrentUserPaths Request Parameters

N/A (this web method does not accept any calling parameters)

GetCurrentUserPaths Response

Data type Description

s:string (JSON) OperationCompletedSuccessfully (code=2) + list of path data objects
on success; or QueryDidNotReturnRecords (code=8) if current user
has no paths

Example of GetCurrentUserPaths HttpGet Request

Request:

http://development.paths-project.eu/Path.asmx/GetCurrentUserPaths?

Web Method: GetPathsForItem

Summary: Get paths associated with a specific item

GetPathsForItem Request Parameters

Parameter Data type Description

item_uri s:string URI of item for which associated paths should
be returned

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

61

GetPathsForItem Response

Data type Description

s:string (JSON) OperationCompletedSuccessfully (code=2) + list of path data objects
on success.

Example of GetPathsForItem HttpGet Request

Request:
http://development.paths-project.eu/Path.asmx/GetPathsForItem?item_uri=s:string

Web Service: Social

Summary: The web service Social contains all functionality associated with user generated
content which may be attached to paths, nodes and items. UGC elements are associated
with resources via a URI and may in principle be attached to any web resource. This reduces
the amount of tables required for the connections and simplifies the data management.

Web Method: GetCommentsForUri

Summary: Get comments for a web resource with specified URI

GetCommentsForUri Request Parameters

Parameter Data type Description

fk_rel_uri s:string URI of web resource for which comments
should be retrieved.

GetCommentsForUri Response

Data type Description

s:string (JSON) OperationCompletedSuccessfully (code=2) + list of comment data
objects on success.

Example of GetCommentsForUri HttpGet Request

Request:

http://development.paths-project.eu/Social.asmx/GetCommentsForUri?fk_rel_uri=s:string

Web Method: AddComment

Summary: Add new comment to web resource identified by URI

Remark: Web method requires user to be authenticated

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

62

AddComment Request Parameters

Parameter Data type Description

fk_rel_uri s:string URI of web resource to be commented upon

comment s:string Comment text

AddComment Response

Data type Description

s:string (JSON) OperationCompleteSuccessfully (code=2) + single comment data
object

Example of AddComment HttpGet Request

Request:
http://development.paths-
project.eu/Social.asmx/AddComment?fk_rel_uri=s:string&comment=s:string

Web Method: DeleteComment

Summary: Deletes comment with specified identifier

Remark: Method requires a user to be authenticated.

DeleteComment Request Parameters

Parameter Data type Description

comment_id s:int Unique database identifier of comment to be
deleted

DeleteComment Response

Data type Description

s:string (JSON) OperationCompletedSuccessfully (code=2) on success.

Example of DeleteComment HttpGet Request

Request:
http://development.paths-project.eu/Social.asmx/DeleteComment?comment_id=s:int

Web Method: AddTag

Summary: Adds a tag (keyword) to a resource identified by a URI

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

63

Remark: Method requires a user to be authenticated

AddTag Request Parameters

Parameter Data type Description

fk_rel_uri s:string URI of resource which tag should be added to

tag s:string Any keyword or keyphrase to be used as tag

AddTag Response

Data type Description

s:string (JSON) Tag data object and OperationCompletedSuccessfully (code=2) on
success

Example of AddTag HttpGet Request

Request:

http://development.paths-project.eu/Social.asmx/AddTag?fk_rel_uri=s:string&tag=s:string

Web Method: DeleteTag

Summary: Delete tag with specified URI

Remark: Method requires a user to be authenticated

DeleteTag Request Parameters

Parameter Data type Description

tag_uri s:string URI of the tag to be deleted

DeleteTag Response

Data type Description

s:string (JSON) OperationCompletedSuccessfully (code=2) on success

Example of DeleteTag HttpGet Request

Request:

http://development.paths-project.eu/Social.asmx/DeleteTag?tag_uri=s:string

Web Method: GetTagsForUri

Summary: Get list of tags associated with a specific resource identified by its URI

GetTagsForUri Request Parameters

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

64

Parameter Data type Description

fk_rel_uri s:string URI of resource for which tags should be
retrieved

GetTagsForUri Response

Data type Description

s:string (JSON) QueryDidNotReturnRecords (code=8) if no tags are found,
OperationCompletedSuccessfully (code=2) and list of tag data
objects on success

Example of GetTagsForUri HttpGet Request

Request:
http://development.paths-project.eu/Social.asmx/GetTagsForUri?fk_rel_uri=s:string

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

65

Web Method: AddRating

Summary: Add rating to a resource identified by its URI

Remark: Requires an authenticated or temporary user session

AddRating Request Parameters

Parameter Data type Description

fk_rating_scale_id s:int Unique database identifier for rating_scale
table. 1 = dislikes, 2=likes

fk_rel_uri s:string URI of resource which rating should be added
to

AddRating Response

Data type Description

s:string (JSON) QueryDidNotReturnRecords (code=8) if no rating values exist;
OperationCompletedSuccessfully (code=2) and count of ratings

Example of AddRating HttpGet Request

Request:
http://development.paths-
project.eu/Social.asmx/AddRating?fk_rating_scale_id=s:int&fk_rel_uri=s:string

Web Method: DeleteRatingForUri

Summary:

DeleteRatingForUri Request Parameters

Parameter Data type Description

fk_rel_uri s:string

DeleteRatingForUri Response

Data type Description

s:string (JSON)

PATHS Collaborative Project EU-ICT-270082 D3.2 First Prototype and Documentation

66

Example of DeleteRatingForUri HttpGet Request

Request:

http://development.paths-project.eu/Social.asmx/DeleteRatingForUri?fk_rel_uri=s:string

