
Europeana Inside: Technical Specification

V5.0 29/04/14 page 1 of 44

Grant Agreement 297292

EUROPEANA INSIDE

Technical Specification

Deliverable number D4.6

Dissemination level Public

Delivery date April 2014

Status V5.0

Author(s) K-INT

This project is funded under the
ICT Policy Support Programme part of the

Competitiveness and Innovation Framework Programme.

Europeana Inside: Technical Specification

V5.0 29/04/14 page 2 of 44

Revision History

Revision Date Author Organisation Description

V0.1
(D2.5)

2012-10-31 Neil Smith K-INT Document structure

V0.2
(D2.5)

2012-11-09 Rich Bruin
Rob Tice
Gill Osguthorpe
Ian Ibbotson

K-INT Initial version of architecture
and component requirements
sections

V0.3
(D2.5)

2012-11-16 Rich Bruin
Neil Smith
Rob Tice

K-INT Initial version of all other
sections. Addresses
comments on v0.2 that had
reached an agreement by
12pm 2012-11-15

V0.9
(D2.5)

2012-11-27 Rich Bruin
Neil Smith

K-INT Incorporation of outstanding
comments on v0.2 and new
comments on v0.3

V1.0
(D2.5)

2012-11-28 Rich Bruin
Neil Smith

K-INT Incorporation of comments
from project management
board

V1.5
(S2.6)

2013-04-05 Chas Woodfield
Rob Tice
Neil Smith

K-INT Update to architecture to
cover all four iterations of
development

V2.9
(S2.8)

2013-12-10 Neil Smith
Chas Woodfield

K-INT Updated in preparation for
iteration 3. Issues relating to
data push and content re-
ingestion need resolving prior
to v3.0 being issued

V3.0
(S2.8)

2014-01-16 Neil Smith
Chas Woodfield

K-INT Updated version circulated to
technical partners

V4.0
(D4.6)

2014-04-21 Neil Smith
Chas Woodfield

K-INT Updated version circulated to
technical partners

V5.0
(D4.6)

2014-04-29 Neil Smith
Chas Woodfield

K-INT Final version incorporating
partner comments

Statement of originality:

This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of
others has been made through appropriate citation, quotation or both.

Europeana Inside: Technical Specification

V5.0 29/04/14 page 3 of 44

Contents

1. INTRODUCTION .. 5

1.1. Purpose ... 5

1.2. Scope ... 5

1.3. System Overview ... 5

2. DESIGN CONSIDERATIONS... 6

2.1. Assumptions and Dependencies.. 6

2.2. General Constraints ... 6

2.3. Development Methodologies .. 6

3. SYSTEM ARCHITECTURE .. 7

3.1. Overall Architecture ... 7

3.2. ECK Modules .. 9

3.3. General Implementation and Integration ... 9

3.4. Illustrative workflow ... 10

3.5. Other Considerations .. 11

4. DETAILED MODULE DESIGN ... 13

4.1. CMS: ECK supporting functionality ... 13

4.2. ECK Core ... 14

4.3. Metadata profile definition module... 16

4.4. Persistence module ... 17

4.5. PID Generation module ... 17

4.6. Preview module .. 19

4.7. Validation module .. 20

4.8. Set Manager .. 21

4.9. Statistics ... 27

4.10. Data Mapping / Transformation .. 29

4.10.a. Data Mapping .. 29

4.10.b. Data Transformation .. 30

4.11. OAI-PMH Repository .. 32

4.12. Data Push .. 32

4.13. Aggregator/ ECK Supporting Functionality (was Content Re-ingestion)........................... 32

5. SCHEDULING & ISSUES .. 34

5.1. Development Schedule .. 34

5.2. Outstanding Issues .. 34

6. ACCEPTANCE & SIGN OFF ... 35

6.1. Acceptance ... 35

6.2. Sign Off ... 35

7. GLOSSARY OF TERMS .. 36

Europeana Inside: Technical Specification

V5.0 29/04/14 page 4 of 44

ANNEX 1 - EUROPEANA INSIDE ITERATIVE DEVELOPMENT PLAN 37

ANNEX 2 COVERAGE OF FUNCTIONAL REQUIREMENTS 40

ANNEX 3 COVERAGE OF HIGH LEVEL REQUIREMENTS 43

ANNEX 4 COVERAGE OF NON-FUNCTIONAL REQUIREMENTS 44

Europeana Inside: Technical Specification

V5.0 29/04/14 page 5 of 44

1. Introduction
1.1. Purpose

The aim of this document is to set out the overall architecture for the Europeana Connection
Kit (ECK) which was developed as part of the Europeana Inside project. The different
components within this architecture will then be defined and specified in such a way that
they can be implemented by the various project partners and so that the implementations
can be tested against the requirements in order to certify the developed tools as ECK
compliant.

1.2. Scope

This document sets out the overall architecture for the ECK and includes detailed
specification of all components developed during the four iterations released during the
course of the project.

1.3. System Overview
1.3.1. System Requirements

The system requirements are set out in the D2.4 – Functional Requirements.

1.3.2. System Deliverables
1.3.2.1. Iteration 1 (WP3)

The project deliverables which relate directly to iteration 1 are D3.1 (Prototype) and D3.2
(Codebase on GitHub).

1.3.2.2. Iteration 2 (WP3)

The project deliverables which relate directly to iteration 2 are D3.3 (Prototype) and D3.4
(Technical Integration Progress Report). There is also an internal deliverable, S3.5
(Codebase on GitHub).

1.3.2.3. Iteration 3 (WP5)

The internal deliverables which relate directly to iteration 3 are S5.0 (Prototype) in month 24
and S5.0.1 (Codebase on GitHub) in Month 25.

1.3.2.4. Iteration 4 (WP5)

Iteration 4, the final version of the ECK, is related to a number of deliverables. These are:

• D5.1 (Production version)

• D5.2 (Integration Status Report)

• D5.3 (Technical Documentation)

• D5.4 (Forward Plan)

There is also an internal deliverable S5.5 (Final Codebase on GitHub).

Europeana Inside: Technical Specification

V5.0 29/04/14 page 6 of 44

2. Design Considerations
2.1. Assumptions and Dependencies

Work Package 4 is dependent on the outputs of Work Packages 3 and 5 to produce its
deliverables. Therefore, the following functionality was required for testing in the
specified iteration:

• Data Selection and Transformation Iteration 1

• Management Overview of status and data publication Iteration 2

• Content re-ingestion from Europeana Iteration 3

2.2. General Constraints

• Delivery dates for each iterative release of the software (see section 1.3.2 above)
were fixed in the description of work and can only be changed with the approval of
the project monitoring officer.

• Each functional area should have at least one reference open source
implementation with the source code published on a widely accessible platform (e.g.
GitHub).

• Many of the functional requirements are dependent on availability of functionality
and services from Europeana

• The specification for each functional component is designed to be technology
neutral, i.e. it should be possible for the requirement to be met using a number of
different technical approaches (e.g. java, .NET, C#, PHP, etc.).

2.3. Development Methodologies

The ECK development followed an iterative approach. This allows some of the “easy wins”
to be tackled first and ensures that a complete system is available for use as early in the
project as possible. This approach means that new functionality can be given to users
sooner than the more traditional waterfall approach, allowing them to find flaws while there is
still time to correct them in later iterations. It also means that later iterations of the ECK
design can be targeted at requirements which may not yet have become clear as part of the
requirements elicitation process so far.

Development tasks in each iteration were assigned numbers relating to the area of
functionality being developed. As the iterative development progressed, some functional
areas were merged into a single module and other functions split across modules. It is
therefore important to note that there is not a simple 1:1 mapping between functionality and
modules.

Europeana Inside: Technical Specification

V5.0 29/04/14 page 7 of 44

3. System Architecture
3.1. Overall Architecture

Due to the nature of the ECK and its integration within the many different CMS and
aggregator systems throughout the Europeana Inside project there can be no one overall
‘system architecture’ in the traditional sense. Rather the ECK will be made up of a set of
modular components that may or may not be implemented as standalone services in the
Europeana Inside ecosystem rather than as a single monolithic whole. Some of these
modules will actually come from existing functionality within CMS systems, others will be
developed as part of this project and can be incorporated directly into or interfaced with the
CMS or aggregation systems themselves and others might be existing third party
components which can be used ‘as is’ or wrapped in a service later with appropriate API
calls.

The high level architecture was designed to meet the following principles:

• The overall architectural style complies with established principles for service
oriented architectures1

• The ECK comprises a set of modular components

• The components may be implemented locally or externally

• Functionality which is closely related to exist functionality within a CMS should be
embedded within the CMS

• Components should expose (machine) interfaces to other components in a
consistent fashion

• User interfaces, where necessary, will be embedded within the CMS and will be
consistent with the look and feel of the individual CMS

• As well as the CMS, ECK components will interact with, and may be embedded in,
aggregators

• Some ECK components will interact with aggregators or directly with Europeana

Figure 1is a representation of the overall architecture and environment in which the ECK will
operate. Some of the functional requirements listed in D2.4 are to be provided by the CMS
itself, while other parts are provided by external, shared modules. The connections between
the components are of course as important as the individual modules themselves as they
represent the interfaces presented by the different modules and the communications that are
sent via these interfaces.

The figure depicts the overall architecture as consisting of a number of modules. These
modules are summarised in Table 1.

As can be seen from Figure 1, some ECK modules have been incorporated into the
aggregators used within the project. ECK functionality has also been implemented in other
components of the ecosystem, such as middleware, but these variants have been left out of
the diagram for simplification purposes.

1
 http://en.wikipedia.org/wiki/Service-oriented_architecture

Europeana Inside: Technical Specification

V5.0 29/04/14 page 8 of 44

Figure 1: Representation of the overall ECK architecture and its communication with the CMS and aggregator / Europeana

Notes:

1. CMS / CMS ECK must contain either an OAI-PMH Repository or Data Push Client (Sword v1), management information and content re-

ingestion functionality

2. Aggregator ECK contains an OAI-PMH client and repository, a Data Push Server (Sword v1), management information and content re-

ingestion functionality

3. All modules document and implement their own persistence

CMS ECK

ECK Core

Set Manager

Aggregator ECK

Data Mapping /
Transformation

Preview

PID Generation

Metadata Profile Definition

Validation

Statistics

Europeana
CMS

Aggregator

Europeana Inside: Technical Specification

V5.0 29/04/14 page 9 of 44

3.2. ECK Modules

The table below shows the ECK modules and describes the functionality they deliver. These
functional areas were identified by analysis of the requirements specification in conjunction
with the high level design principles set out in section 3.1.

Module Functional Description

CMS: ECK supporting
functionality

All functionality that must be provided within or alongside a CMS in
order to meet the functional requirements set out in D2.4, including
Data Push and/or OAI-PMH repository and content re-ingestion.

ECK Core The gateway to the various modules, so supports all interfaces that
all the other modules support.

Metadata Definition Provides definitions for metadata elements within profiles and error
messages in the different languages

Data Mapping /
Transformation

Converts between formats, e.g. Native format to LIDO or LIDO to
EDM

Preview Provides a preview of how the record will be rendered in the
Europeana user interface

PID Generation Provides a persistent id for the record

Set Manager Manages the sets and records

Statistics Provides statistics about the performance of modules

Validation Validates the record to ensure it conforms to a provided profile (of
either LIDO or EDM).

Aggregator: ECK supporting
functionality

Accepts data via data push or OAI-PMH, supplies data to Europeana
via OAI-PMH and provides management information and enriched
records for re-ingestion

Table 1: Summary of ECK functionality

3.3. General Implementation and Integration

After consideration of the complexities of code-based integration, it was decided that direct
access to the code library (or libraries) would make the ECK much more difficult to maintain
and also to integrate with systems due to the requirement of different language-specific core
and modules. It was therefore decided to deliver the ECK based on HTTP access and
interaction between functional components, where necessary using language specific SDKs
to wrap the HTTP calls. This is illustrated below.

Figure 2: Overall implementation / deployment overview enabling SDK access or
direct HTTP access from the CMS code to the ECK code as required by each

individual implementation scenario

Europeana Inside: Technical Specification

V5.0 29/04/14 page 10 of 44

3.3.1. Consistent URL

As all the components expose a RESTful interface, all references to records within the
system should conform to a consistent URL pattern. The pattern is:
/<module>/<provider>/<Set, Group, Batch>/<action>/<record id>?parameters

Where:
<module> is the root path for the module being called (eg. Set, PIDGeneration,

Validation, Preview/Template)
<provider> is the provider code for the owner of the record(s)
<Set, Group, Batch> is the set / group or batch the record(s) belongs to
<action> is the action to be performed, which will obviously vary between

modules
<record id> is the id of the record that an action needs to be performed against,

this will not be required for all actions, for some modules this may not
be required at all.

If a single record is supplied as a parameter then it is assumed to be a single operation and
the result is expected to be returned immediately.

If a zip file is supplied then it is assumed to be a batch operation, the module will return
immediately with the http code 202 (Accepted).

Once a batch has been accepted then the action “status” can be called on that batch to
retrieve the status of the operation (complete, in progress, queued etc.).

When the status action reports that the batch operation has been completed a “fetch” action
can be performed against the batch to retrieve the results in a zip file.

It could be that even though only 1 record is supplied the module might want to treat it as a
batch operation in which case the client will need to accept this.

If batch is not supported by the module, then it should return the http error code 501 (Not
Implemented).

To obtain statistics form a module then the action “statistics” can be used, if the module has
used the statistics module to store its statistics then the information can be retrieved from
there, otherwise it will need to manage its statistics in some manner, if statistics are not
supported by the module then it should return the http error code 501.

3.4. Illustrative workflow

The functional components of the ECK have been designed to allow a flexible range of
deployment options and many different scenarios for invocation and orchestration between
components. Table 3 below illustrates a simple workflow for a typical simple ECK
implementation. It identifies the three main systems involved:
CMS The source Collections Management System or other supplying system
AGG The aggregator (Culture Grid or project Dark Aggregator)
EUR Europeana

Note that all ECK functions may be called directly or via the ECK Core. CMS vendors may
choose either route. All ECK functions accessed by Aggregators within the project are
accessed via the ECK core. For simplicity of presentation, ECK core is not included in the

Europeana Inside: Technical Specification

V5.0 29/04/14 page 11 of 44

table below.

Step Systems involved Action
1 CMS CMS user invokes CMS:ECK module to produce a LIDO

representation of a batch of metadata records using PID
Generation (if required) and one of Data Mapping or Data
Transformation. Optionally, messages returned from
modules are interpreted using Metadata Definition.

2 CMS CMS user invokes CMS:ECK to call Validation and Preview
for a sample of LIDO records.

3 CMS – AGG CMS user invokes CMS:ECK to make records available to
Aggregator using either native functionality or calling Set
Manager to provide OAI-PMH or Data Push functions.

4 AGG Aggregator receives LIDO records from CMS and calls
Validation then Data Transformation to produce a batch of
EDM records associated with a data provider.

5 AGG Optionally, a data provider staff member accesses
Aggregator user interface to view Management Information,
Statistics and call Preview for a sample of records

6 AGG – EUR Aggregator uses native OAI-PMH functionality to make
records available to Europeana

7 EUR Europeana ingests records and makes Management
Information available

8 AGG - EUR Aggregator requests Management Information from
Europeana via ECK Core

9. AGG - EUR Aggregator retrieves updated records from Europeana and
generates an Enrichment record

10 CMS - AGG CMS requests Management Information from Aggregator
and Europeana via ECK Core

11 CMS – AGG CMS requests enrichment records from Aggregator via ECK
Core

Table 2: Illustrative ECK workflow (iteration 2)

3.5. Other Considerations
3.5.1. Introduction

This section details other considerations that have been taken into account when designing
the technical architecture and requirements.

3.5.2. Functional, High Level and Non-functional Requirements

Coverage of requirements by each module is outlined in Annexes 2, 3 and 4.

3.5.3. Extensibility

The architecture of the ECK is designed to be extensible to accommodate both changes to
the requirements of Europeana and also to allow the code base to be used to supply data to
other services.

Europeana Inside: Technical Specification

V5.0 29/04/14 page 12 of 44

3.5.4. Other Tools

There are already many existing tools that implement parts of the functionality required by
the ECK. When specifying each module, the responsible developers first reviewed existing
tools and utilized them where appropriate.to the extent they can be used or further
developed as part of the ECK.

3.5.5. Other Required Modules

The ECK modules outlined in this document are designed to satisfy all the requirements set
out in D2.4. However, it is acknowledged that, in future, there may be a need to add new
modules or change existing ones to meet new and changing requirements.

Europeana Inside: Technical Specification

V5.0 29/04/14 page 13 of 44

4. Detailed Module Design

The following sections set out the detailed design and specification of the different ECK
modules. The order of these sections does not imply any order of invocation since this is
likely to vary on a use by use basis.

There is a section for each functional area originally identified from analysis of the functional
requirements. Where functionality has been merged or split across modules this is noted in
the relevant section.

4.1. CMS: ECK supporting functionality
4.1.1. Summary

This section represents functionality that must be provided within the main CMS in order for
the CMS to be classed as ECK compliant. It includes functions such as selecting and
exporting records in the relevant metadata profile to an aggregator, reporting on the state of
record selection/ export and managing the re-ingestion of enriched records.

4.1.2. Assumptions

The process of configuring and setting up the CMS-ECK interface and the ECK functionality
itself doesn’t count towards implementing export as a 1-click process, but once configuration
is complete a 1-click process should be possible.

Exactly how the different selection / reporting functionality is implemented is completely up to
the CMS vendor involved, this specification just states what overall functions are required in
order to be ECK compliant.

It is expected that the CMS may want to retrieve definitions of fields and explanations of their
use from the ECK profile definition module. The messages from that module can then be
overridden if they do not exactly fit the particular use case if required.

4.1.3. Technical Design
4.1.3.1. Interfaces

The code for this section of the system is highly CMS specific with the exception of the
interface with the ECK core. Therefore the only interface that is specified here is that the
CMS is able to communicate with the interfaces exposed by the ECK core component.

4.1.3.2. Conformance Criteria

A CMS will be deemed to conform to this specification when it implements interfaces to
satisfy each of the functional requirements listed above.

4.1.3.3. Implementation Expectations

Since this functionality is entirely contained within each CMS it is expected that each CMS
will implement this section separately.

Europeana Inside: Technical Specification

V5.0 29/04/14 page 14 of 44

4.2. ECK Core
4.2.1. Summary

This represents the gateway to the ECK functionality as it is integrated into the various CMS
systems. It is envisaged that this will be the interface that the CMS communicates directly
with and will accept data from the CMS before passing it through the various ECK modules
as appropriate and then onto consuming aggregators, etc. This section will also perform the
stock mappings from the implemented metadata profiles into EDM ensuring consistency
throughout the implementations and insulating the core CMS systems from changes to EDM.

4.2.2. Assumptions

Communications with processes that are likely to be long running should be event driven or
poll based, while processes that will definitely return without delay should allow for direct
result access.

This part of the system is exposed is exposed to the CMS using a HTTP RESTful interface.

The ECK core is stateless as it is essentially a gateway to the other components of the ECK.

4.2.3. Technical Design
4.2.3.1. Interfaces

This provides an interface to the methods within the ECK, so that the CMS will not need to
know where the different modules are installed, as these will be configured in the core.

The core will support all the API calls for all the modules that are expected to be called by
the CMS, so using the set manager as an example, an API call to the set manager takes the
form:
 /Set/<provider>/<set name>/<action>/<record id>?parameters

for redirection though the gateway this would take the same form so instead of being:
http://server/ECKSetManager/Set/<provider>/<set name>/<action>/<record id>?parameters

it becomes:
http://server/ECKCore/SetManager/Set/<provider>/<set name>/<action>/<record
id>?parameters

The list of path mappings for each module are as follows:

Module Path

Data Mapping DataMapping
Data Transformation DataTransformation
Statistics Statistics
Metadata Profile Definition Definition
PID Generation PIDGeneration
Preview Preview
Set Manager SetManager
Validation (monguz) Validation
Validation (semantika) Validation2

Europeana Inside: Technical Specification

V5.0 29/04/14 page 15 of 44

For any modules not listed in the above table, it is not perceived that there will be a need for
them to be called by the CMS.

In addition to the above modules there is also an aggregator interface built into ECK Core.
This interface is capable of talking to any aggregator (e.g. Europeana) which supports the
requested action. If an aggregator does not support the action, or ECK Core does not
support the action for that aggregator, then http status 400 (Bad Request) will be returned
with an appropriate explanatory message.

The URL format for the aggregator interface is:
/Aggregator/<aggregator>/<action>/<parameter1>/<parameter2>?parameters

Where:
aggregator is the aggregator you want to communicate with (eg. CultureGridLive,
CultureGridTest, DarkAggregator, Europeana, SetManager)

action is the action to be performed against the aggregator, the possible actions are:
enrichmentRecord returns the enriched record for the given record id and set
search returns all the records for the supplied provider and collection
statistics returns the statistics for the supplied provider and collection

parameter1 and parameter2 vary depending on the action and are as follows:

enrichmentRecord action:

parameter1 set identifier
parameter2 record identifier

search and statistics actions:

parameter1 provider identifier
parameter2 collection identifier

The additional parameters that are supported by the actions are:
Action Parameter Details
enrichmentRecord lidoRecID (not

supported by
europeana)

can be used when the aggregators record
identifier is unknown (assuming the lido record
was uploaded to that aggregator)

search start where to start returning records from in the
result set (1 is the first record)

 rows number of records to return per request. Note
that an aggregator may enforce its own
maximum. Therefore it is not safe to assume
the end of the result set has been reached just
because less records are returned than
requested. If an aggregator returns no records
then it is safe to assume the end of the result
set has been reached.

Statistics none

4.2.3.2. Conformance Criteria

In order to conform to these specifications the module must implement each of the

Europeana Inside: Technical Specification

V5.0 29/04/14 page 16 of 44

mandatory interfaces detailed here. In addition all modules that are to be integrated with the
ECK core should be fully exposed via the ECK core for use by the CMS which submitted the
request.

4.2.3.3. Implementation Expectations

It is expected that there will be one implementation of the core accessible via http. The http
calls will also be able to be (optionally) wrapped in language specific SDKs to enable easier
integration with external systems and to optionally insulate them from dealing with http calls
directly. Such language specific SDKs can form an extensible integration library which can
be contributed to as the ECK develops and becomes more widely used.

4.2.4. Online Documentation

The online documentation for the Core module can be found at http://euinside.k-
int.com/ECKCore2/help/core

4.3. Metadata profile definition module
4.3.1. Summary

This module will allow for the provision of multilingual alternative labels for use by the source
CMS when displaying information to end users. It has been designed to be used in two
circumstances:

1. Defining labels for metadata elements. For example in profiles of LIDO, MARC or
EDM, the caller will be able to request all definitions for a profile in a given language or the
definition of a single field in a given language.

2. Enabling the lookup of meaningful multilingual error definitions and guidance on
steps to take to avoid them for use when explaining validation and other errors that have
occurred elsewhere in the ECK system. For example validation errors can be returned as
codes from the validation module and they can then be dereferenced in the appropriate
language for the user using this module.

4.3.2. Assumptions

None

4.3.3. Technical Design
4.3.3.1. Interfaces

The interface to this module is listed in the following table, all calls being an HTTP GET and
the data will be returned in JSON:

Europeana Inside: Technical Specification

V5.0 29/04/14 page 17 of 44

URL (pattern) Function

/languages Lists all available languages
/profiles Lists all profiles in the default language
/profiles/<language> Lists all profiles in the specified language
/profiles/<language>/<profile_identifier> Lists all the definitions in the language specified for the

given profile
/profiles/<language>/<profile_identifier>/<field> Returns the definition for the specified profile and field

combination for the language specified
/errors Lists all errors in the default language
/errors/<language> Lists all the error definitions in the specified language
/errors/<language>/<error_code> Returns the specified error definition for the given

language

Where:
<language> is the ISO code for the language you are interested in
<profile_identifier> is the identifier for the profile you are interested in
<field> is the field you want the definition for
<error_code> is the error you want the definition for

4.3.3.2. Conformance Criteria

This module will be deemed to conform to the specification when it exposes each of the
above defined interfaces for use by the CMS components.

4.3.3.3. Implementation Expectations

It is expected that this module will be shared throughout the different implementations and
therefore there should be only one installation that holds all the different interpretations of
the messages.

4.3.4. Online Documentation

The online documentation for the Metadata Definition module can be found at
http://euinside.k-int.com/ECKCore2/Definition

4.4. Persistence module

From iteration 2 onwards there will no longer be a persistent module. Each module will
provide, describe and manage its own persistent layer. The persistence functionality that
was part of Iteration 1 is now part of the Set Manager.

4.5. PID Generation module
4.5.1. Summary

This module is in charge of creating PIDs for those records which do not already have
suitable identifiers. It will allow creation of PIDs based on institution URL (or some other
identifier if no URL is available), record type and record accession number (or other suitable
local identifier), combining these into a PID. Reverse lookup will also be supported allowing

Europeana Inside: Technical Specification

V5.0 29/04/14 page 18 of 44

a generated PID to be separated and the constituent parts returned.

It is intended that the PID generated here can be used to drive a co-referencing service that
allows links to be made between CMS IDs and other external IDs such as those exposed as
part of an OAI-PMH server, generated by Europeana or other aggregators, etc.

4.5.2. Assumptions

This whole module is only required if the CMS does not already contain records with PIDs or
a field that can be used directly as the PID

It is expected that this module will be shared throughout the different implementations and
therefore there should be only one installation that holds all the different interpretations of
the messages.

4.5.3. Technical Design
4.5.3.1. Interfaces

The module will expose the following methods as interfaces for use by other parts of the
ECK:

• Generate PID

• Reverse lookup PID (return constituent parts)

4.5.3.2. Conformance Criteria

Implementations of this module will conform to the specification when they fully expose each
of the above specified interfaces for use.

4.5.3.3. Implementation Expectations

It is expected that this module will be shared throughout the different implementations and
therefore there should be only one installation.

 It is also expected that the implementation(s) of this module will take into account existing
recommendations and standards for ID generation in this field. Examples of such standards
and recommendations are:

• ISIL - http://biblstandard.dk/isil/

• MuseumID - http://museumid.net

• CIDOC ID recommendations - http://bit.ly/CIDOC-IdRecommendations

4.5.4. Online Documentation

The online documentation for the PID Generation module can be found at http://euinside.k-
int.com/ECKCore/static/docs/Semantika_EU_Inside_PID_Generation_WS.pdf

Europeana Inside: Technical Specification

V5.0 29/04/14 page 19 of 44

4.6. Preview module
4.6.1. Summary

This module allows for the generation of preview web pages to show how the user’s data will
look when imported into Europeana (and optionally other targets e.g. intermediate
aggregators, etc.). Given a single or set of metadata records the module will populate
template pages for a sample hit list and record details page including thumbnails, etc. These
previews will be packaged into a ZIP archive and returned to the caller or in the case where
a web presence for the module is required the preview can be hosted directly and a link to
the resource returned to the caller.

4.6.2. Assumptions

The module does not require a web presence to allow the previews to be viewed in the case
where the calling system (CMS) requires a bundle to be returned. However the default
behaviour is that the preview is hosted for access via a web browser. Some implementations
may prefer to expose the preview directly on a website to be linked to, while others may
prefer full control and as such require the preview bundle to be returned. The module should
also be able to act as a façade to existing preview services such as the Europeana content
checker if they provide the functionality required.

4.6.3. Technical Design
4.6.3.1. Interfaces

The module will expose the following methods as interfaces for use by other parts of the
ECK:

• List preview templates

• Get preview template

• Upload / update preview template

• Apply preview template and return bundle (optional)

• Apply preview template with web presence

4.6.3.2. Conformance Criteria

In order to conform to these requirements any implemented preview module must expose
each of the mandatory interfaces detailed above. The optional interface can also be
implemented, but without the other interfaces the module does not conform to these
specifications

4.6.3.3. Implementation Expectations

It is expected that this module will be shared throughout the different implementations and
therefore there should be only one installation.

It is also expected that the implementation may act as a façade around existing preview
services such as the Europeana content checker if they provide the required functionality.

4.6.4. Online Documentation

The online documentation for the Preview module can be found at http://euinside.k-
int.com/ECKCore/static/docs/preview-rest-api-MON.pdf

Europeana Inside: Technical Specification

V5.0 29/04/14 page 20 of 44

4.7. Validation module
4.7.1. Summary

This module provides validation functionality for the ECK. It receives one or more metadata
documents. The module then performs the following types of validation on the provided data:

• Schema validation against the specified metadata profiles

• Checks that media exists if referenced

• Checks that media is referenced if it exists

• Check that referenced media is of a suitable size to fit with Europeana guidelines2

• Checks field contents for things that can’t easily be checked by schema validation
including URI fields contain URIs, etc.

• Option – Checks against ‘style guidelines’ for the profile – “rules of thumb” checks
that titles aren’t too long, etc. which may suggest that data from the wrong field has
been mapped

A validation report is then returned to the calling system which can be parsed and presented
to the user and the persistence layer is used to annotate the record with the validation
results. This report will contain validation error codes which can then be dereferenced for
each required language using the profile definition module specified in Section 4.3.

4.7.2. Assumptions

None

4.7.3. Technical Design
4.7.3.1. Interfaces

The module will expose the following methods as interfaces for use by other parts of the
ECK:

• One by one validation

• Batch validation

4.7.3.2. Conformance Criteria

Implementations of this module will be deemed to conform to the specification when they
fully implement each of the interfaces detailed above.

4.7.3.3. Implementation Expectations

It is expected that there will probably be one validation module implementation.

4.7.4. Online Documentation

The online documentation for the validation modules can be found at http://euinside.k-
int.com/ECKCore/static/docs/validation-rest-api-common.pdf

2
 http://bit.ly/europeanaImageGuidelines

Europeana Inside: Technical Specification

V5.0 29/04/14 page 21 of 44

4.8. Set Manager
4.8.1. Summary

The set manager allows a controlled way for sets to be managed, harvested, pushed and for
actions to be performed in a consistent manner, actions can be performed on the set as a
whole or on individual records.

There will be 2 versions of a set, a live set which is the version that will be posted to
Europeana and the working set where changes are made, the working set becomes the live
set when the action “commit” is performed on the set.

To conform with the OAI-PMH protocol, records are not deleted, they are only ever marked
as deleted.

4.8.2. Assumptions

None.

4.8.3. Technical Design
4.8.3.1. Interfaces

The URL for the set module will be:
 /Set/<provider>/<set name>/<action>/<record id>?parameters

Where:
<provider> Is the code for the provider of the data (it will be restricted by client IP

address as to which machines can provide/request data for a provider)
<set name> is the set that is to be manipulated or information is to be provided for, if

the set does not exist, it will be created, for compatibility with iteration 1 the
set name of “default” will be created for any data persisted in iteration 1.

<action> is the action to be performed on the set
<record id> is the record to be actioned, this is not applicable for all actions and will be

ignored if supplied where it is not relevant.

Europeana Inside: Technical Specification

V5.0 29/04/14 page 22 of 44

The possible parameters are:

Parameter Meaning Value

collection The collection identifier required for data push
delete A comma separated list of records to be deleted from the set
deleteAll Mark all records in the set as being deleted Yes / No
europeanaId The europeana id for this provider
historyItems The number of history that should be returned as part of the status

message
default 20

live If set to yes the live set will be returned, otherwise the working set
be returned

password The password required for data push
provider The provider identifier required for data push
records A posted zip file that contains the records that are to be added to the

set or update existing records
Valid
records

setDescription A description that can be used for the set
status The status of the records to be returned by the list action all (default)

pending
error
valid
deleted

swordURL The url to be used for data push
username The username required for data push

A set could have one of the following statuses:

Status Meaning Applies to Set

Dirty The set has been updated since the last commit Working
Validating Validating prior to a commit Working
Commit Commit is in progress Live, Working
Committed No changes since the last commit Live, Working
Error For all scenarios where an error has occurred

and a retry option is no longer viable
Live, Working

Europeana Inside: Technical Specification

V5.0 29/04/14 page 23 of 44

The following actions can be performed on a set:

Action Details Data Returned Record Id
Valid

Valid
Parameters

commit Informs the system to perform validation on all records

in the set that have yet to be validated, makes all valid

record in the set available to Europeana for harvesting.

If records are also supplied it performs an update

action first.

The action is queued and therefore returns

immediately, use the status action to find more details.

None No

delete
deleteAll
records

edit Edits the details associated with the set None No collection
europeanaId
password
provider
setDescription
swordURL
username

list Returns the list of identifiers from the working set and

whether the record is valid or not.

JSON array of objects that contain:

• cms id

• persistent id

• validation status (OK, Error or

Pending)

No live
status

preview Calls the preview module for the specified record id same as returned by preview module Yes
push Pushes the committed data to the specified sword

server, the server is specified using the swordURL
parameter. The destination username, password and
onBehalf is specified on the provider record and the
collectionId for the destination is specified on the
ProviderSet

None No

record Returns the record for the specified record id from the

working set as xml.

the original data supplied for the record Yes

Europeana Inside: Technical Specification

V5.0 29/04/14 page 24 of 44

Action Details Data Returned Record Id
Valid

Valid
Parameters

If no record id is supplied then all records in the

working set are returned as a zip file.

statistics Provides statistics for the set JSON object that returns the following:

• The provider code

• The collection code

• The set description

• Number of records accepted
(live)

• Number of pending records

• Number of rejected records

• Total number of records

• Most recent europeana statistics

No

status Provides the status of the set JSON object that contains the following:

• When the set was created

• When the harvest / post became

available

• The status of the live and working

sets

• How many records in the working

set

• How many records in the live set

• How many records are valid

• How many records are waiting to be

validated

• How many records are invalid

• Array of pending actions

No historyItems

update Takes the supplied zip of records and updates the

working set with these records.

The action is queued and therefore returns
immediately, use the status action to find more details.

None No delete
deleteAll
records

validate Return the validation errors for all invalid records, if the
record_id is specified it will return just the errors for that

JSON array of objects that contain the Yes

Europeana Inside: Technical Specification

V5.0 29/04/14 page 25 of 44

Action Details Data Returned Record Id
Valid

Valid
Parameters

record following:

• cms id

• array of objects containing

• error code

• additional information

4.8.3.2. Conformance Criteria

Implementation of this module is deemed to be complete when all the actions defined above are fully implemented.

4.8.3.3. Implementation Expectation

There will be both local and remote implementations of this module.

4.8.3.4. Persistence Implementation

The diagram below shows the persistence implementation for this module:

Europeana Inside: Technical Specification

V5.0 29/04/14 page 26 of 44

Europeana Inside: Technical Specification

V5.0 29/04/14 page 27 of 44

4.8.4. Online Documentation

The online documentation for the Set Manager module can be found at http://euinside.k-
int.com/ECKCore2/SetManager

4.9. Statistics
4.9.1. Summary

The statistics module allows users to track usage off the modules. This data, along with data
from the set manager, can be used to provide feedback to data providers. During
development and testing, it can also be used to determine where and when bottlenecks
occur.

4.9.2. Assumptions

None.

4.9.3. Technical Design
4.9.3.1. Interfaces

The following interfaces will be available for the statistics module:

1. /Statistic/update/<module>?Parameters

The parameters that are to be supplied are:

Parameter Meaning

itemsProcessed The number of items that were processed
dateTime Date and time of when the processing started, format: ISO8601, RFC3339
numberSuccessful The number of items that were successfully processed
numberFailed The number of items that failed to be processed
Duration The length of time in milliseconds that it took to process these records

There is no data returned for this call.

2. /Statistic /query/<module>/<type of query>?limit=<maximum number of items to

return>&duration<the base line for the duration>

The parameters that can be supplied are

Parameter Meaning

Limit Maximum number of items to return
Duration The minimum duration of time that we are interested in

The data returned is a JSON array of objects that contain the following:

• The date and time of when the processing started

• The number of items processed

• The number of successfully processed items

• The number of items that failed processing

• The duration in milliseconds of the time it took to perform the processing

Europeana Inside: Technical Specification

V5.0 29/04/14 page 28 of 44

The query types that will be acceptable are:

Type Meaning

Slowest Return the longest running calls (based on the average time taken to process 1
item)

Status Returns the following

• Total number of items processed

• Total time taken to process the items

• Fastest time to process an item

• Slowest time to process an item

• Average time taken to process the items

4.9.3.2. Conformance Criteria

Implementation of this module is deemed to be complete, when the interfaces defined above
are fully implemented

4.9.3.3. Implementation Expectation

This should be installed with every implementation, so statistics can be gathered

4.9.3.4. Persistence Implementation

The diagram below shows the persistence implementation for this module.

Europeana Inside: Technical Specification

V5.0 29/04/14 page 29 of 44

4.9.4. Online Documentation

The online documentation for the Statistics module can be found at http://euinside.k-
int.com/ECKCore2/Statistics/

4.10. Data Mapping / Transformation

4.10.a. Data Mapping

4.10.a.1 Summary

The Data Mapping module will map a record from one format to another using the supplied
rules.

4.10.a.2 Assumptions

None.

4.10.a.3. Technical Design

4.10..a.3.1 Interfaces

The url for the module will be /DataMapping/<provider>/<batch>/<action>?parameters

Where:
<provider> is the code for the provider of the data
<batch> is the name for this batch.
<action> is the action to be performed on this batch

The possible parameters are:

Parameter Meaning

Record An xml file that requires mapping
Records A zip file that contains the records that require mapping
sourceFormat The format of the source record
targetFormat The format of the target of the mapping
mappingRulesFile A csv file that contains the rules required to perform the mapping
requestId The request identifier returned by the Transform action, that is to be

used for the Status and Fetch actions

The possible actions are:

Action Meaning

Fetch Fetches the results for the batch submission
List Returns a list of the supported formats
Status Returns the status of the batch submission
Transform Transforms the supplied record(s)

Europeana Inside: Technical Specification

V5.0 29/04/14 page 30 of 44

The mapping will return records in XML, for the Fetch action the records will be returned in
XML or in a zip file if they are submitted in a zip file.

If a format is not supported then an appropriate http error code will be returned saying that it
is unsupported.

4.10.a.3.2. Conformance Criteria

Implementation of this module is deemed to be complete, when the interfaces defined above
are fully implemented

4.10.a.3.3. Implementation Expectation

There should only be a need for 1 implementation of this module.

4.10.a.3.5. Online Documentation

The online documentation for the Data Mapping module can be found at http://euinside.k-
int.com/ECKCore/static/docs/ManualDataMappingTransformationService.doc

4.10.b. Data Transformation

4.10.b.1 Summary

The Data Transformation module will transform a record from one format to another. In
iteration 2, development will concentrate on LIDO to EDM mapping. In subsequent
iterations, the module may be extended to provide mappings from a range of input formats to
LIDO for use in implementations where this conversion is not handled by the ECK CMS
supporting functionality module.

4.10.b.2 Assumptions

For iteration 2, all implementations will be able to provide LIDO to this module. LDO to EDM
mapping will be based on mappings provided by other Europeana family projects,

4.10.b.3. Technical Design

4.10..b.3.1 Interfaces

The url for the module will be /DataMapping/<provider>/<batch>/<action>?parameters

Where:
<provider> is the code for the provider of the data
<batch> is the name for this batch.
<action> is the action to be performed on this batch

Europeana Inside: Technical Specification

V5.0 29/04/14 page 31 of 44

The possible parameters are:

Parameter Meaning Value

record An xml file that requires mapping A record that is valid for the source format
records A zip file that contains the records

that require transforming
Zipped records that are valid for the source
format

requestId The request identifier returned by
the Transform action, that is to be
used for the Status and Fetch
actions

sourceFormat The format the supplied record is
in

Any valid format that the module supports
conversions from, in iteration 2 this will only be
LIDO, if this is omitted then LIDO will be
defaulted

targetFormat The format that that the record
will be returned in

Any valid format that the module supports
conversions to, in iteration 2 this will only be
EDM, if this is omitted then EDM will be
defaulted

The possible actions are:

Action Meaning

Fetch Fetches the results for the batch submission
List Returns a list of the supported formats
Status Returns the status of the batch submission
Transform Transforms the supplied record(s)

The mapping will return records in XML, for the Fetch action the records will be returned in
XML or in a zip file if they are submitted in a zip file.

If a format is not supported then an appropriate http error code will be returned saying that it
is unsupported.

4.10.b.3.2. Conformance Criteria

Implementation of this module is deemed to be complete, when the interfaces defined above
are fully implemented

4.10.b.3.3. Implementation Expectation

There should only be a need for 1 implementation if this module.

4.10.b.3.4. Online Documentation

The online documentation for the Data Mapping module can be found at http://euinside.k-

int.com/ECKCore/static/docs/ManualDataMappingTransformationService.doc.

Europeana Inside: Technical Specification

V5.0 29/04/14 page 32 of 44

4.11. OAI-PMH Repository
4.11.1. Summary

This is no longer a separate module. The Set Manager module now provides the OAI-PMH
repository. Some implementations will incorporate a local OAI-PMH repository into the ECK
CMS supporting functionality.

4.12. Data Push
4.12.1. Summary

This is no longer a separate module. The Set Manager module now provides a repository to
support the data push service. Some implementations will incorporate a data push (SWORD
v1) client into the ECK CMS supporting functionality.

4.13. Aggregator/ ECK Supporting Functionality (was Content Re-ingestion)

4.13.1. Summary

The Aggregator ECK performs the following functionality within the ECK:

• a data push server

• an OAI-PMH Client

• an OAI-PMH Repository

• generating the enrichment record for the content re-ingestion process

• providing management information

• managing Aggregator ECK Workflow.

4.13.1.1. Data Push Server

This server complies too the Sword v1 protocol, so it can accept records from a CMS that
has implemented a Sword v1 client.

4.13.1.2. OAI-PMH Client

The client complies too the OAI-PMH v2 protocol, so it can harvest records from a CMS that
has implemented an OAI-PMH Repository v2.

4.13.1.3. OAI-PMH Repository

The repository complies too the OAI-PMH v2 protocols so it can make the records available
to Europeana.

4.13.1.4. Providing Management Information

Returns statistical management information including the status of record processing
(number of records accepted, pending, rejected, published, etc.) from both the aggregator
and Europeana using the ‘statistics’ call described in section 4.2.3.1.

Europeana Inside: Technical Specification

V5.0 29/04/14 page 33 of 44

4.13.1.5. Generating the Enrichment Record for Content Re-ingestion

As part of content re-ingestion process the aggregator retrieves the published records from
Europeana and generates an enrichment record that can be requested by the CMS.

4.13.1.6. Managing Aggregator ECK Workflow

The aggregator provides a workflow for obtaining / receiving the records from the CMS,
validating the records, transforming the records to EDM if they are valid, making the EDM
records available to Europeana, generating the enrichment record and making it available to
the CMS.

4.13.2. Assumptions

None

4.13.3. Technical Designs

The module interacts with the ECK Core (in order to integrate with the Validation, Preview

and Data Transformation modules) and also make the enrichment record available to the

CMS. ECK Core interfaces are described in section 4.2.

4.13.4. Online Documentation

See the appropriate section within this document for the online documentation about the
modules used.

The documentation for aggregator section of the ECKCore can be found at http://euinside.k-
int.com/ECKCore2/help/aggregator

The OAI-PMH v2 protocol can be found at
http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm

The Sword v1 protocol can be found at http://swordapp.org/sword-v1/

Europeana Inside: Technical Specification

V5.0 29/04/14 page 34 of 44

5. Scheduling & Issues
5.1. Development Schedule

The development schedule for each area of functionality, along with associated task
numbers is described in the table below:

Functional Area Iteration 1 Iteration 2 Iteration 3 Iteration 4

CMS: ECK supporting functionality 3.1.1 3.2.1 5.1.1 5.2.1
ECK Core 3.1.2 3.2.2 5.1.2 5.2.2
Metadata Profile Definition 3.1.3 3.2.3 5.1.3 5.2.3
Persistence 3.1.4
PID Generation 3.1.5 3.2.5 5.1.5 5.2.5
Preview 3.1.6 3.2.6 5.1.6 5.2.6
Validation 3.1.7 3.2.7 5.1.7 5.2.7
Set Manager 3.2.8 5.1.8 5.2.8
Statistics 3.2.9 5.1.9 5.2.9
Data Mapping/ Transformation 3.2.10 5.1.10 5.2.10
OAI-PMH Repository 3.2.11 5.1.11 5.2.11
Data Push 3.2.12 5.1.12 5.2.12
Content Re-ingestion/ ECK Aggregator 5.1.13 5.2.13

5.2. Outstanding Issues

The following issues could not be addressed within the timescales set for the production of
this deliverable.

• How is ECK conformance to be defined and measured?
To be addressed as part of the forward plan (D5.4)

• How are features such as data push to supported by the Europeana infrastructure
after the end of the project?

To be addressed as part of the forward plan (D5.4)

• How are tasks such as maintenance of provider codes and provision of aggregator
services for institutions without access to another aggregator to be addressed after
the end of the project?

To be addressed as part of the forward plan (D5.4)

• Is the approach to validation taken in the majority of implementations (i.e. validation
of LIDO records but no validation of EDM) sufficient to guarantee delivery of high
quality data to Europeana?

To be addressed by the coordinating partner in discussion with Europeana and other
stakeholders.

Europeana Inside: Technical Specification

V5.0 29/04/14 page 35 of 44

6. Acceptance & Sign Off
6.1. Acceptance

Software components must meet the specified conformance criteria to be accepted. Content
partners were responsible for verifying that the conformance criteria have been met.
Acceptance testing took place as part of work package 4 and is reported on as part of that
work package.

6.2. Sign Off

All internal and external deliverables were signed off by the project board and the
coordinating partner using the procedures specified in the project initiation document.

Europeana Inside: Technical Specification

V5.0 29/04/14 page 36 of 44

7. Glossary of terms

[term] [definition]

CMS Collection Management System – A system used for managing the data held
about the objects held by museums and other institutions

CMS ID The identifier for a resource as generated by the CMS

CP Content Provider – A Europeana Inside project partner who is involved in the
project in order to facilitate contribution of their data into Europeana

CRUD Create Read Update Destroy – The main functions required in order to save
and maintain data as persistent storage

ECK Europeana Connection Kit – The system being specified here

EDM Europeana Data Model – The data model that Europeana uses for data it
ingests, etc. http://www.europeana.eu/schemas/edm/

HTTP HyperText Transfer Protocol – the standard protocol used when
communicating with web servers

LIDO Lightweight Information Describing Objects – A metadata standard for
representing data about objects http://www.lido-schema.org

OAI-PMH Open Archives Initiative – Protocol for Metadata Harvesting. A standard that
sets out how metadata records can be served and harvested as a means of
sharing

PID Persistent IDentifier – an identifier that will always represent the resource to
which it refers and is unique

REST /
RESTful

Representational State Transfer is a style of software architecture that allows
for access to services exposed on remote servers typically via the web. A
system is said to be RESTful if it conforms to REST principles. A full
discussion of REST can be found at
http://en.wikipedia.org/wiki/Representational_state_transfer

SDK Software Development Kit – A set of software tools that allow for the
implementation of functionality within other tools.

TP Technical Partner – A Europeana Inside project partner who is involved in the
project in order to contribute to and develop the ECK system (at least for the
purposes of this document)

URL Uniform Resource Locator – a string that serves as an identifier for a resource
on the Internet and provides for the capacity to locate the resource

WFR.xx.xx Functional requirement as defined in the previous Europeana Inside
deliverable D2.4 Functional Requirements.

WPx Work Package x – A specific stage of the Europeana Inside project.

Europeana Inside: Technical Specification

V5.0 29/04/14 page 37 of 44

Annex 1 - Europeana Inside Iterative Development Plan

Month DOW Revised Plan

 WP 2 and WP 3 and WP5 WP 4

Iteration 1

07 D2.4 Functional
Requirement

D2.5 Technical
specification

D2.4 Functional
Requirement

08 D2.5 Tech Architecture &
detailed specification

09

10

11

12

13 D3.1 EUROPEANA INSIDE
Prototype -Iteration 1

D3.1 Prototype

14 D3.2 EUROPEANA INSIDE
Codebase

D3.2 Codebase on GitHub

15

16 D4.1 Control Export
Evaluation Report

 D4.2 Content Export
Schedule

D4.1(v1) Control Export
Evaluation Report

Europeana Inside: Technical Specification

V5.0 29/04/14 page 38 of 44

Month DOW Revised Plan

 WP 2 and WP 3 and WP5 WP 4

Iteration 2

14 S2.6 Detailed specification

15

16

17

18 D3.3 EUROPEANA INSIDE
Management Interface

D3.4 Technical Integration
Report

D3.3 Prototype

D3.4 Technical Integration
Progress Report

19 S3.5 Codebase on GitHub

20 D4.1(v2) Control Export
Evaluation Report

Iteration 3

20 D4.2 Content Export
Schedule

S2.7 Detailed specification

21 D4.3 Export Evaluation
Report

D4.4 Content Re-ingestion
Report

D4.5 Summative
Evaluation Report

D4.6 Revised Technical
Specification

22

23

24 S5.0 Prototype

25 S5.0.1 Codebase on
GitHub

26 D4.3(v1) Export
Evaluation Report

D4.4 Content Re-
Ingestion Report

D4.5(v1) Summative
Evaluation Report

Europeana Inside: Technical Specification

V5.0 29/04/14 page 39 of 44

Month DOW Revised Plan

 WP 2 and WP 3 and WP5 WP 4

Iteration 4

25 S2.8 Detailed specification
(same as D4.6 Revised
Technical Specification?)

D4.6 Revised Technical
Specification
(same as S2.8 Detailed
specification?)

26

27

28 D5.1 Production version D5.1 Production version

29 D5.2 Integration Status
Report
D5.3 Technical
Documentation

D5.2 Integration Status
Report

D5.3 Technical
Documentation

D4.3(v2) Export
Evaluation Report

D4.5(v2) Summative
Evaluation Report

30 D5.4 Forward Plan D5.4 Forward Plan

S5.5 Codebase on GitHub

Key:

Dx.x Formal deliverable as specified in DOW

Sx.x Software related task, not in DOW but required for iterative development

Europeana Inside: Technical Specification

V5.0 29/04/14 page 40 of 44

Annex 2 Coverage of Functional Requirements

Key:

 Must
 Should
 Could
 Won’t

Req Task Title

01.01 CMS Export management

01.02 CMS
Management
Information

Revision history

01.04 CMS
PID

PID management

01.05 Re-ingestion Enriched data management

02.01 CMS Select multiple records

02.02 CMS Select single record

02.03 CMS Select records based on values

02.04 CMS Boolean operators

02.05 CMS Indication of selected fields

02.06 Selecting within record

02.07 CMS Reuse saved queries

02.08 Manage multiple selections

02.09 Standardised selection filters

03.01 Transformation Automatic EDM mapping

03.02 Preview Preview mapping

03.03 Mapping Editable mapping

03.04 CMS
Mapping

Mapping feedback

03.05 Mapping Saving mapping

03.06 Mapping
Metadata
Profile
Definition

Field explanations

03.07 Mapping Automatic value insertion

Europeana Inside: Technical Specification

V5.0 29/04/14 page 41 of 44

Transformation

03.08 CMS Check digital asset availability

03.09 CMS
Mapping
Transformation

Thumbnail selection

03.10 CMS
Mapping
Transformation

Multiple assets

03.11 CMS
Mapping
Transformation

Defining media type

03.12 CMS
Mapping

Metadata field on IPR digital object

03.13 CMS
Mapping

Metadata field on IPR metadata

03.14 CMS
Mapping

Metadata field on IPR preview

03.15 CMS
Mapping
Transformation

Mark mandatory fields

03.16 CMS
Transformation

Choose default mapping

03.17 CMS Automatic data suggestion

03.18 CMS Target format selection

03.19 CMS
Mapping

Semantic data enrichment

03.20 CMS
Mapping

Conditional mapping

03.21 CMS
Mapping

Nested or grouped mapping

03.22 CMS
Mapping
Transformation

Intermediate format mapping

03.23 CMS
Mapping

Support for conditional truncation

03.24 CMS
PID

Apply PID

03.25 CMS
Mapping

Conditional field conversion

04.01 Validation Validation

04.02 Validation Feedback on validation

04.03 CMS
Validation

Edit invalidated fields

04.04 Validation Automatic license validation

04.05 OAI-PMH
Data Push

Test ingestion

04.06 Validation Align validation

05.01 CMS
Core

Auto supply

Europeana Inside: Technical Specification

V5.0 29/04/14 page 42 of 44

OAI-PMH
Data Push

05.02 CMS
Core
OAI-PMH
Data Push

Re-supply functionality for failed records

05.03 CMS
Core
OAI-PMH
Data Push

Schedule data supply

05.04 Mapping
Transformation
OAI-PMH
Data Push

Supply for 3rd party collaboration

06.01 Preview Preview presentation Europeana

06.02 CMS
Core
OAI-PMH
Data Push

Withdraw records

06.03 CMS
Core
OAI-PMH
Data Push

Update published records

06.04 Management
Information

Publication indication

06.05 Management
Information

Automatic publication alert

07.01 CMS
Management
Information
Re-ingestion

Available enriched content alert

07.02 CMS Accept/ decline enrichments (record
level)

07.03 CMS
Re-ingestion

Automatic ingest of enriched data

07.04 CMS
Re-ingestion

Separate enriched content

07.05 CMS
Re-ingestion

Enriched IPR identification

07.06 CMS Choose target ingest

07.07 CMS Accept/ decline (field level)

07.08 Re-ingestion PID enrichment

07.09 Re-ingestion Pull option

07.10 Management
Information
Re-ingestion

Enriched data management

Europeana Inside: Technical Specification

V5.0 29/04/14 page 43 of 44

Annex 3 Coverage of High Level Requirements

Req Task Title

HLR.01 Implicit in
architecture

Exchange of cultural data

HLR.02 All Contributing to Europeana

HLR.02 CMS
Re-ingestion

Adding value to local collections

HLR.04 CMS
Core

Data management

HLR.05 CMS
Core
Management
Information

Transparency

HLR.06 CMS
OAI-PMH
Data Push

Choice of data pull or push to Europeana

HLR.07 Mapping
Transformation
OAI-PMH
Data Push

Multiple targets (same as 05.04?)

HLR.08 Implicit in
architecture

Various routes

HLR.09 CMS
Mapping

Contextualisation

HLR.10 Implicit in
architecture

Re-use available knowledge

HLR.11 Implicit in
architecture

Modular

HLR.12 Implicit in
architecture

Export-import

HLR.13 Implicit in
architecture

API

HLR.14 To be decided Communication of changes

HLR.15 CMS
Management
Information

Version tracking

HLR.16 CMS Changing and saving of settings

Europeana Inside: Technical Specification

V5.0 29/04/14 page 44 of 44

Annex 4 Coverage of non-functional Requirements

Req Task Title

NFR.01 T5.4 Sustainable and persistent workflow

NFR.02 T5.4 Label for CMS software

NFR.03 CMS User friendly

NFR.04 Auto-update

NFR.05 Implicit in
architecture

Make cultural heritage available to digital
services

NFR.06 CMS
T5.3

User manual and training materials

NFR.07 CMS
Metadata
profile
Definition
T5.3

Multilingual support and documentation

NFR.08 Implicit in
architecture

Flexibility and adaptability

NFR.09 Implicit in
architecture

Open standards

NFR.10 Implicit in
architecture

Re-use existing tools

NFR.11 Implicit in
architecture

Modular (same as HLR.11)

NFR.12 Implicit in
architecture
T5.4

Easy adaptability

NFR.13 CMS Simplicity

NFR.14 T5.4 Public-private partnership

NFR.15 Implicit in
architecture

Master-slave

NFR.16 T5.4 Organisation embedding

